
Image Differentiation

Carlo Tomasi

January 15, 2020

Many image operations, including edge detection and motion analysis in video, require com-
puting the derivatives of image intensity with respect to the horizontal (x) or vertical (y) direction.
This stands to reason: Edges are curves on the image plane across which image intensity changes
rapidly (the derivative is large); Motion is computed by comparing changes over time (time deriva-
tive) with changes over image space (spatial derivatives).

However, since images are defined on discrete domains, “image differentiation” is undefined. To
give this notion some meaning, we think of images as sampled versions of continuous1 distributions
of brightness. This indeed they are: the distribution of intensities on the sensor is continuous, and
the sensor integrates this distribution over the active area of each pixel and then samples the result
at the pixel locations.

“Differentiating an image” means to compute the samples of the derivative of the continuous
distribution of brightness values on the sensor surface.

Thus, differentiation involves, at least conceptually, undoing sampling (that is, computing a
continuous image from a discrete one), differentiating, and sampling again. The process of undoing
sampling is called interpolation if the continuous function is required to pass through the samples,
and fitting otherwise. Figure 1 shows a conceptual bloc diagram for the computation of the image
derivative in the x (or c) direction.

I(r, c) C(x, y) D(x, y) Ic(r, c)
i

Figure 1: Conceptual bloc diagram for the computation of the derivative of image I(r, c) in the
horizontal (c) direction. The first block interpolates or fits the samples from a discrete to a con-
tinuous domain. The second computes the partial derivative in the horizontal (x) direction. The
third block samples from a continuous domain back to a discrete one.

interpolation or fitting can be expressed as a hybrid-domain convolution, that is, a convolution
of a discrete image with a continuous kernel. This is formally analogous to a discrete convolution,

1“Continuous” here refers to the domain: we are talking about functions of real valued variables.

1



but has a very different meaning:2

C(x, y) =

∞∑
i=−∞

∞∑
j=−∞

I(i, j)P (x− j, y − i)

where x, y are real variables and P (x, y) is called the interpolation (or fitting) kernel. The key
difference with respect to the convolution we are familiar with is that now P is a function of real
variables, P : R × R → R, rather than a function of integer variables, H : Z × Z → R. As a
consequence, the output C is now also a function of real variables.

This hybrid convolution seems hard to implement: how can we even represent the output, a
function of two real variables, on a computer? However, the chain of the three operations depicted
in Figure 1 goes from discrete-domain to discrete-domain. As we now show, the transformation
performed by the whole chain (but not its individual links) can be implemented easily and without
reference to continuous-domain variables.

Since both interpolation (or fitting) and differentiation are linear, instead of interpolating (or
fitting) the image and then differentiating we can interpolate (or fit) the image with the derivative
of the interpolation (or fitting) function. Formally,

D(x, y) =
∂C

∂x
(x, y) =

∂

∂x

∞∑
i=−∞

∞∑
j=−∞

I(i, j)P (x− j, y − i)

=

∞∑
i=−∞

∞∑
j=−∞

I(i, j)Px(x− j, y − i)

where

Px(x, y) =
∂P

∂x
(x, y)

is the partial derivative of P (x, y) with respect to x. This change in the position of the differentiation
operator is crucial, as it changes the problem from one of differentiating an arbitrary signal C(x, y)
to one of differentiating a known, simple kernel function P (x, y).

Finally, we need to sample the result D(x, y) at the grid points (r, c) to obtain a discrete image
Ic(r, c). This yields the final, discrete convolution that computes the derivative of the underlying
continuous image with respect to the horizontal variable:3

J(r, c) =
∞∑

i=−∞

∞∑
j=−∞

I(i, j)Px(c− j, r − i) .

Note that all continuous variables have disappeared from this expression: this is a standard,
discrete-domain convolution, so we can implement this on a computer without difficulty. In other
words, while some of the steps in the chain of operations in Figure 1 are potentially problematic,
the transformation performed by the chain as a whole is a simple, discrete convolution of the type
we are familiar with.

2For simplicity, we assume that the x and y axes have the same origin and direction as the j and i axes: to the
right and down, respectively. Functions of discrete variables have the row argument first, and the column argument
second. Functions of continuous variables have the horizontally varying argument first, and the vertically varying
argument second.

3Again, c and r are assumed to have the same origin and orientations as x and y.

2



The correct choice for the function P (x, y) is outside the scope of this course, but it turns out
that the truncated Gaussian function is adequate, as it smooths the data (through fitting, not
interpolation) while differentiating. We therefore let P̃ be the (unnormalized) Gaussian function
of two continuous variables x and y:

P̃ (x, y) = G(x, y)

and P̃x, P̃y its partial derivatives with respect to x and y (Figure 2). We then sample P̃x and P̃y

over a suitable interval [−n, n] of the integers and normalize them by requiring that their response
to a ramp yield the slope of the ramp itself. This normalization ensures that derivatives are not
scaled up or down: The derivative of x is 1, not just some constant. A unit-slope, discrete ramp in
the j direction is represented by

u(i, j) = j

and we want to find a constant u0 such that

u0

n∑
i=−n

n∑
j=−n

u(i, j)P̃x(c− j, r − i) = 1

for all r, c so that

Px(x, y) = u0 P̃x(x, y) and Py(x, y) = u0 P̃y(x, y) .

In particular for r = c = 0 we obtain

u0 = − 1∑n
i=−n

∑n
j=−n jGx(j, i)

. (1)

Since the partial derivative Gx(x, y) of the Gaussian function with respect to x is negative for
positive x (or j), the constant u0 is positive. By symmetry, the same constant normalizes Gy.

Of course, since the two-dimensional Gaussian function is separable, so are its two partial
derivatives:

Ic(r, c) =

n∑
i=−n

n∑
j=−n

I(i, j)Gx(c− j, r − i) =

n∑
j=−n

d(c− j)
n∑

i=−n
I(i, j)g(r − i)

where

d(x) =
dg

dx
= − x

σ2
g(x)

is the ordinary derivative of the one-dimensional Gaussian function g(x). A similar expression holds
for Ir(r, c) (see below).

Thus, the partial derivative of an image in the x direction is computed by convolving4 with d(j)
and g(i). The partial derivative in the y direction is obtained by convolving with d(i) and g(j). In

4Consistently with our definition of the reference axes, functions of j are row vectors, and functions of i are column
vectors.

3



Figure 2: The partial derivatives of a Gaussian function with respect to x (left) and y (right)
represented by plots (top) and isocontours (bottom). In the isocontour plots, the x variable points
horizontally to the right, and the y variable points vertically down.

both cases, the order in which the two one-dimensional convolutions are performed is immaterial,
because convolution commutes:

Ic(r, c) =

n∑
i=−n

g(r − i)
n∑

j=−n
I(i, j)d(c− j) =

n∑
j=−n

d(c− j)
n∑

i=−n
I(i, j)g(r − i)

Ir(r, c) =
n∑

i=−n
d(r − i)

n∑
j=−n

I(i, j)g(c− j) =
n∑

j=−n
g(c− j)

n∑
i=−n

I(i, j)d(r − i) .

Normalization can also be done separately: the one-dimensional Gaussian g is normalized as
shown in a previous note, and the one-dimensional Gaussian derivative d is normalized by the
one-dimensional equivalent of equation (1):

d̃(u) = ue−
1
2(uσ )

2

kd =
1∑n

v=−n vd̃(v)

d(u) = −kdd̃(u) .

4



We can summarize this discussion as follows.

The “derivatives” Ic(r, c) and Ir(r, c) of an image I(r, c) in the horizontal (to the right) and
vertical (down) direction, respectively, are approximately the samples of the derivative of
the continuous distribution of brightness values on the sensor surface. The images Ic and
Ir can be computed by the following convolutions:

Ic(r, c) =
n∑

i=−n
g(r − i)

n∑
j=−n

I(i, j)d(c− j) =
n∑

j=−n
d(c− j)

n∑
i=−n

I(i, j)g(r − i)

Ir(r, c) =
n∑

i=−n
d(r − i)

n∑
j=−n

I(i, j)g(c− j) =
n∑

j=−n
g(c− j)

n∑
i=−n

I(i, j)d(r − i) .

In these expressions,

g(u) = kg g̃(u) where g̃(u) = e−
1
2(uσ )

2

and kg =
1∑n

v=−n g̃(v)

and

d(u) = kdd̃(u) where d̃(u) = ue−
1
2(uσ )

2

and kd = − 1∑n
v=−n vd̃(v)

.

The constant σ determines the amount of smoothing performed during differentiation: the
greater σ, the more smoothing occurs. The integer n is proportional to σ, so that the effect
of truncating the Gaussian function is independent of σ.

The Image Gradient

A value of the partial derivative Ix and one of Iy can be computed at every image position5 (x, y),
and these values can be collected into two images. Two sample images are shown in Figure 3 (c)
and (d).

A different view of a detail of these two images is shown in Figure 4 in the form of a quiver
diagram. For each pixel (x, y), this diagram shows a vector with components Ix(x, y) and Iy(x, y).
The diagram is shown only for a detail of the eye in Figure 3 to make the vectors visible.

The two components Ix(x, y) and Iy(x, y) considered together as a vector at each pixel form the
gradient of the image,

g(x, y) = (Ix(x, y), Iy(x, y))T .

The gradient vector at pixel (x, y) points in the direction of greatest change in I, from darker to
lighter. The magnitude

g(x, y) = ‖g(x, y)‖ =
√
I2x(x, y) + I2y (x, y)

of the gradient is the local amount of change in the direction of the gradient, measured in gray
levels per pixel. The (total) derivative of image intensity I along a given direction with unit vector

5We assume to pad images by replication beyond their boundaries to prevent large spurious derivatives there.

5



(a) (b)

(c) (d)

Figure 3: (a) Image of an eye. See Figure 4 for a different view of the detail in the box. (b) The
gradient magnitude of the image in (a). Black is zero, white is large. (c), (d) The partial derivatives
in the horizontal (c) and vertical (d) direction. Gray is zero, black is large negative, white is large
positive. Recall that a positive value of y is downwards.

6



Figure 4: Quiver diagram of the gradient in the detail from the box of Figure 3 (a). Note the long
arrows pointing towards the bright glint in the eye, and those pointing from the pupil and from
the eyelid towards the eye white.

7



u is the rate of change of I in the direction of u = (u, v). This can be computed from the gradient
by noticing that the coordinates p = (x, y)T of a point on the line through p0 = (x0, y0)

T and
along u are

p = p0 + tu that is,
x = x0 + tu
y = y0 + tv

,

so that the chain rule for differentiation yields

dI

dt
=
∂I

∂x

∂x

∂t
+

∂I

∂y

∂y

∂t
= Ixu+ Iyv .

In other words, the derivative of I in the direction of the unit vector u is the projection of the
gradient onto u:

dI

dt
= gTu . (2)

8


