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a b s t r a c t

Systems biology aims to develop mathematical models of biological systems by integrating experimen-
tal and theoretical techniques. During the last decade, many systems biological approaches that base
on genome-wide data have been developed to unravel the complexity of gene regulation. This review
deals with the reconstruction of gene regulatory networks (GRNs) from experimental data through com-
eywords:
ystems biology
everse engineering
iological modelling
nowledge integration

putational methods. Standard GRN inference methods primarily use gene expression data derived from
microarrays. However, the incorporation of additional information from heterogeneous data sources, e.g.
genome sequence and protein–DNA interaction data, clearly supports the network inference process.
This review focuses on promising modelling approaches that use such diverse types of molecular bio-
logical information. In particular, approaches are discussed that enable the modelling of the dynamics of
gene regulatory systems. The review provides an overview of common modelling schemes and learning

urren
algorithms and outlines c

. Introduction

In ‘systems biology’, one aims to model the physiology of living
ystems as a whole rather than as a collection of single biologi-
al entities. Such an approach has the practical benefit of offering
nsight into how to control or optimise parts of the system while
aking into account the effect it has on the whole system. There-
ore, taking a ‘systems-wide’ view may lead to alternative solutions
n application areas such as biotechnology and medicine. The abil-
ty to take a systems-wide approach is only possible due to recent
evelopments in high-throughput technologies that enable scien-
ists to carry out global analyses on the DNA and RNA level and
arge-scale analyses on the protein and metabolite level. To gain
better understanding of the observed complex global behaviour

nd the underlying biological processes, it is necessary to model the
nteractions between a large number of components that make up
uch a biological system. To be able to learn respective large-scale
odels, the use of novel computational methods that can make an
ntegrative analysis of such different sources of data is essential and
hallenging at the same time.

Uncovering the dynamic and intertwined nature of gene regula-
ion is a focal point in systems biology. The activity of a gene’s func-

∗ Corresponding author. Tel.: +49 3641 532 1083; fax: +49 3641 532 0803.
E-mail address: reinhard.guthke@hki-jena.de (R. Guthke).

303-2647/$ – see front matter © 2008 Elsevier Ireland Ltd. All rights reserved.
oi:10.1016/j.biosystems.2008.12.004
t challenges in GRN modelling.
© 2008 Elsevier Ireland Ltd. All rights reserved.

tional product is influenced not only by transcription factors (TFs)
and co-factors that influence transcription, but also by the degra-
dation of proteins and transcripts as well as the post-translational
modification of proteins. A gene regulatory network (GRN) aims to
capture the dependencies between these molecular entities and
is often modelled as a network composed of nodes (represent-
ing genes, proteins and/or metabolites) and edges (representing
molecular interactions such as protein–DNA and protein–protein
interactions or rather indirect relationships between genes). Many
GRN inference approaches solely consider transcript levels and aim
to identify regulatory influences between RNA transcripts. Such
approaches employ an ‘influential’ GRN, i.e. a GRN where the nodes
consist of genes and edges represent direct as well as indirect
relationships between genes (Fig. 1). This approximation leads to
‘influence’ network models that are intended to implicitly capture
regulatory events at the proteomic and metabolomic level which
sometimes makes them difficult to interpret in physical terms. The
modelling (reconstruction) of a GRN based on experimental data
is also called reverse engineering or network inference. Reverse
engineering GRNs is a challenging task as the problem itself is of
a combinatorial nature (find the right combination of regulators)

and available data are often few and inaccurate.

Therefore, it is beneficial to integrate system-wide genomic,
transcriptomic, proteomic and metabolomic measurements as well
as prior biological knowledge (e.g. from the scientific literature)
into a single modelling process. Using computational support to

http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
mailto:reinhard.guthke@hki-jena.de
dx.doi.org/10.1016/j.biosystems.2008.12.004
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ig. 1. Schematic view of a simple gene regulatory network. Gene A regulates its o
irectly (if it encodes a TF) or indirectly (if it controls the activity of another TF pos

influence’ network model as shown at the bottom.

dequately manage, structure and employ heterogeneous types of
nformation in order to obtain a more detailed insight into bio-
ogical network mechanisms represents a major challenge in GRN
nference today.

Outstanding review articles covering the field of data-driven
nference of GRNs are from De Jong (2002), van Someren et al.
2002a), Gardner and Faith (2005), Filkov (2005), Van Riel (2006),
ansal et al. (2007), Goutsias and Lee (2007), Cho et al. (2007) as
ell as Markowetz and Spang (2007). Well-structured overviews

f the general idea behind GRN inference and diverse common
athematical modelling schemes can be found in De Jong (2002)

nd Filkov (2005). van Someren et al. (2002a) arranged reverse
ngineering techniques according to the characteristics of their
nderlying model and learning strategies; moreover, the pros and
ons of distinct approaches are discussed. Gardner and Faith (2005)
learly outlined between two general reverse engineering strate-
ies: (1) physical models that describe real physical interactions
uch as TF–DNA interactions and (2) influence models that allow
ny type of influence to be modelled, but do not necessarily provide
physical explanation of an effect. Markowetz and Spang (2007)

ocused on probabilistic models, such as Bayesian networks.
In this review we want to emphasize two major aspects:

ynamic network models, i.e. approaches that aim to capture
he complex phenomena of biological systems by modelling the
ime-course behaviour of gene expression, and integration of prior
iological knowledge and heterogeneous sources of data. We chose
he following text structure according to the main steps taken dur-

ng the modelling of GRNs (Fig. 2): first, experimental aspects and
iological databases relevant to the study of GRNs are addressed,
nd main issues of data-driven modelling discussed. Next, Section 3
rovides a survey of typical GRN modelling architectures. Section 4

ig. 2. The systems biology cycle. In this cycle, knowledge leads to new hypotheses,
hich leads to new experiments, which leads to new models, which leads to new

nowledge, etc. Numbers refer to the corresponding sections.
pression and those of gene B. Thereby, gene A might exert its regulatory influence
via a signalling cascade). When reconstructing the GRN, one often aims to infer an

deals with data- and knowledge-driven feature selection and map-
ping methods which aim at reducing the number of variables in the
model to lower model complexity. Fundamental learning strategies
for inferring GRNs are described in Section 5. In Section 6 we focus
on inference methods that employ other types of data in addition to
gene expression measurements. Section 7 addresses the validation
of inferred mathematical models and the assessment of network
inference methods. Section 8 draws conclusions and outlines per-
spectives for future research on GRN inference.

2. Biological Data

The reconstruction of GRNs is largely promoted by advances
in high-throughput technologies, which enable to measure the
global response of a biological system to specific interventions.
For instance, large-scale gene expression monitoring using DNA
microarrays is a popular technique for measuring the abundance
of mRNAs. However, by integrating different types of ‘omics’ data
(e.g. genomic, transcriptomic and proteomic data) the quality of
network reconstruction could be drastically improved. In the fol-
lowing we outline the main characteristics of diverse ‘omics’ data,
itemize distinct types of molecular interactions and briefly refer to
relevant databases as well as measurement techniques.

2.1. Omics Data and Related Technologies

Genome sequence data are supportive to the reconstruction of
GRNs since transcription is regarded as the main control mecha-
nism of gene expression. The analysis of sequence data includes
the investigation of TF binding sites (TFBS). Thereby, the aim is
to detect potential links between sequence motifs and tissue-
specific gene expression. In the past, a vast amount of in silico
approaches has been developed to identify TF binding sequence
elements (Wasserman and Sandelin, 2004). However, as compu-
tational approaches provide only a simplified representation of
DNA-binding events, usually a large number of potential binding
sites (candidates) are predicted, of which many are not functional
(false positives). More detailed data on TFs and their binding sites
are accessible via databases such as JASPAR and TRANSFAC.

Experimentally, the ChIP-on-chip technique (chromatin
immunoprecipitation combined with microarray technology)
allows to characterise protein–DNA interactions at high-
throughput. By identifying the regions of a genome that are
bound by a particular TF in vivo, potential gene regulatory effects
can be derived (Ren et al., 2000). As more and more ChIP-on-chip

data (also called location data) are generated, the large number of
in silico predicted TFBSs gets more and more paralleled by a large
number of experimentally observed TFBSs.

The amounts of transcripts, proteins and metabolites available
at a specific point in time reflect the current state (of activity) of
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Table 1
Categories of interaction databases presented in Pathguide as of 10/2008. In the column ‘#Resources’ the number of databases belonging to each category is shown.

Category Content #Resources Examples

Protein–protein interactions Mainly pairwise interactions between
proteins

105 DIP, BIND, STRING, HPRD

Metabolic pathways Biochemical reactions in metabolic
pathways

60 KEGG, Reactome, ENZYME

Signaling pathways Molecular interactions and chemical
modifications in regulatory pathways

50 STKE, Reactome, TRANSPATH

Transcription factors/Gene regulatory networks Transcription factors and the genes
they regulate

42 JASPAR, TRANSFAC, RegulonDB

Pathway diagrams Hyperlinked pathway images 30 KEGG, HPRD, SPAD
Protein–compound interactions Interactions between proteins and

compounds
24 ResNet, CLiBE
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he biological system. Transcriptome data measured by genome-
ide DNA microarrays are traditionally used for GRN modelling

s RNA molecules are easily accessible in comparison to proteins
nd metabolites. In general, two types of DNA microarrays can be
istinguished: single and two-channel microarrays. Thereby, the
bundance of mRNAs is typically quantified on the basis of short
NA oligonucleotides and cDNA molecules, respectively (Kawasaki,
006). A huge amount of gene expression microarray data is pub-

icly available via repositories such as ArrayExpress and Gene
xpression Omnibus. However, one has to be aware that DNA
icroarray data are characterised by a high degree of variability

noise). One way to overcome this problem is to apply real-time
uantitative PCR assays (RTQ-PCR) to get more precise measures of
ranscript levels for a selected set of genes.

Similar to the transcriptome, the term proteome describes the
nsemble of proteins produced in a cell or organism. Protein lev-
ls are decisively influenced by the amount of mRNA transcripts.
emarkably, the total number of human proteins is much higher
han the number of protein-encoding human genes, because alter-
ative mRNA splicing and post-translational processing increase
he proteome diversity. Moreover, proteins often form complexes
ith other proteins or RNA molecules to achieve specific function

nd activity. The structural variety of proteins and their functional
nteractions cause a high degree of complexity and therefore large-
cale proteomic studies are usually difficult (Pandey and Mann,
000).

Proteins (enzymes) can catalyse enzymatic reactions and thus
re also the basis of all metabolic events. Metabolites also modulate
RNs, however, similarly as within proteomics, technical difficul-

ies hamper a global analysis of the metabolome (Goodacre et al.,
004). Therefore, connecting metabolic and gene regulatory net-
orks is out of the scope of this review and remains a challenge

or the future. However, it should be noted that the area of systems
iological modelling originates from the modelling of metabolic
etworks (Heinrich and Schuster, 1996).

A complementary approach to the systematic measurement of
olecular and cellular states is the characterization of molecular

nteractions. The complex network of intermolecular interac-
ions that wires together the vast amount of genes, proteins
nd small molecules is also called the interactome. Here, high-
hroughput methods enable researchers to systematically screen
or protein–protein and protein–DNA interactions (e.g. ChIP-on-
hip for the latter as mentioned above). Interactome information
an also be found in many different databases containing known

nd predicted interactions. Some of these databases provide
etailed information on regulatory proteins and their associated
egulated genes (e.g. RegulonDB for Escherichia coli), others con-
ain known metabolic networks (e.g. KEGG), still others catalogue
rotein–protein interaction (PPI) information (e.g. DIP). More than
n in 16 REBASE

s epistasis 6 BIND, BioGRID

260 web-accessible biological pathway and network databases are
linked in the meta-database Pathguide (Table 1). Note that the infor-
mation in these databases is by far not complete.

However, besides the wealth of information stored in biological
databases, a large amount of information is found in the scientific
literature. Therefore, text mining tools have been developed to auto-
matically extract interrelations between genes and proteins from
literature with sufficient reliability (e.g. PathwayStudio). Clearly,
such text mining methods also provide useful information for GRN
modelling.

A further type of data relevant to study genes and their regula-
tory interactions are gene functional annotations. Several projects
such as the Gene Ontology (GO) provide a controlled vocabu-
lary to describe gene and gene product attributes. The functional
annotations in the GO database (GO terms) are organized in a hierar-
chical way defining subsets of genes that share common biological
functions. This type of information alleviates the functional inter-
pretation of genes participating in a GRN.

Clearly, this section does not provide a complete and detailed
description of the diverse types of biological data that are available.
However, it illustrates the potential benefit as well as the challenge
of utilizing such diverse and complementary types of biological
information to reliably infer GRNs.

2.2. Experimental Design

As a gene expression experiment is often the basis for a GRN
reconstruction, some aspects concerning the design of such exper-
iments will be covered here. Specifying the experimental design is
an important issue in the investigation of GRNs, since the choice of
a modelling approach and its learning strategy is often related to
the type and amount of data generated. At least two aspects are cru-
cial in this context: perturbation (i.e. the choice of intervention or
experimental condition) and observation (sampling, measurement)
of the biological system.

2.2.1. Perturbation
In general, systems identification is based on the analysis of

input–output signal data that describe the system’s response to
perturbations (Ljung, 1999). Similarly, in order to understand a
dynamic biological system, i.e. its behaviour and functioning, we
need to perturb it systematically. Perturbation experiments can
be designed in different ways depending on the available tech-
niques and the system of interest, and include manipulations of

environmental factors as well as interventions on the genetic, tran-
scriptomic, proteomic or metabolic level.

Environmental perturbations comprise, e.g. heat shock, chem-
ical stresses or compound-treatments up to the administration
of therapeutic agents in medical care. In comparison, genetic
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erturbations, e.g. gene deletion (knock-out) and over-expression
tudies, may exclusively affect those genes in the network, which
ay downstream of the perturbed gene and are therefore a valuable

ethod to specifically detect regulatory dependencies. However,
enetic perturbation experiments are not easy to establish in most
rganisms. The realisation of such studies is therefore restricted to

n vitro experiments or to lower organisms such as the eukaryotic
odel organism Saccharomyces cerevisiae (yeast).
In addition, experiments including perturbations on the tran-

criptome level can be performed and used for GRN inference
Markowetz et al., 2005; Rice et al., 2005). One possibility is to
se a natural mechanism called RNA interference, which is an
NA-guided regulation of gene expression (so-called knock-down
xperiment) (Fire et al., 1998; Mello and Conte, 2004).

Having techniques available that can directly intervene on the
olecular level, researchers are in the position to selectively affect

ene expression. The ability to systematically influence the expres-
ion of genes in a network as well as to subsequently measure
ltered gene expression levels also allows for alternating arrange-
ents of experimental design and model construction. Ideker et

l. (2000), for example, proposed a network inference approach
n which genes with the most uncertain connections in the net-

ork model are perturbed in order to incrementally determine a
oolean network (see Section 3.2) using only a few experiments.
he underlying concept of iterated and systematic perturbations
as also used by Tegner et al. (2003). Although a promising strat-

gy, the applicability of this approach to real data remains to be
roven, since both authors used artificial data in their work.

.2.2. Sampling
Effects of interventions can be observed by static (steady

tate) or time-course measurements, where the latter reflects the
ynamic behaviour of the system over time. Therefore, the choice
etween a static and a dynamic GRN model largely depends on the
xperimental setup. The setup, in turn, should depend on the type
f knowledge one aims to achieve, i.e. the importance of capturing
he effect that changes in initial conditions have on the final states
static) versus capturing the sequence of intermediate processes
hat leads to the final state (dynamic).

While generating static data (at well-defined experimental con-
itions), the observation is accomplished at the presumed steady
tate of the biological system. For instance, samples taken from
nock-out organisms are supposed to provide gene expression lev-
ls at steady-state in the absence of a specific gene product. Network
nference based on data derived from knock-out experiments is very
fficient (Bansal et al., 2007). However, to infer all interactions from
uch data, each node in the network has to be perturbed separately.
oreover, the steady-state design may miss dynamic events that

re critical for reliably inferring the structure of a GRN.
On the other hand, time-series experiments (when samples are

aken in a series of time-points after perturbation) might reveal
ynamics, but the data may contain redundant information lead-

ng to inefficient use of experimental resources. It should be noted
hat an appropriate design of time-series experiments is difficult
n its own. For instance, one has to find a compromise between
bservation duration and the interval between two subsequent
easurements, as the number of time-points also determines the

mount of experimental efforts. Note that the number and alloca-
ion of time-points for sampling affects the performance of the GRN
nference as was studied using synthetic data (Yeung et al., 2002;
eier et al., 2007).
.3. Data Requirements

While generating experimental data, researches have to face a
rade-off. On the one hand, they aim to minimise experimental
s 96 (2009) 86–103 89

efforts and costs, hence try to minimise the number of experiments.
On the other hand, a reliable GRN reconstruction cannot be done
without a considerable quantity of accurate data.

The general opinion is that the amount of data required for GRN
modelling (e.g. DNA microarrays) increases approximately logarith-
mically with the number of network nodes (e.g. genes) (Akutsu et
al., 1999; Yeung et al., 2002; Filkov, 2005). However, it is difficult to
specify the experimental data requirements more precisely as many
further factors influence the network inference performance.

One, the quality of an inferred model depends on the qual-
ity of the given data. Large variations in the biological outcome,
high measurement noise and inappropriate experimental designs
might lead to less informative data and thus hamper a reliable
GRN reconstruction. Two, the aim of the modelling can range from
estimating gene regulatory interactions with high confidence up
to reconstructing even highly speculative regulatory dependen-
cies. Precise estimates of parameters are not always needed to
understand certain qualitative features of a GRN. Three, different
modelling formalisms exhibit different data requirements. More
complex models consist of many model parameters and therefore
their learning is more data demanding. Four, different network
inference algorithms infer gene regulatory effects from a given
amount of data with different efficacy. Searching for the best model
parameter setting is typically computationally intractable even
for simple models. Hence, heuristics have to be applied (see Sec-
tion 5), which may perform suboptimally. Moreover, the applied
inference technique might exploit modelling constraints such as
sparseness of the inferred network (see below and Section 6.1) or
assess the accuracy of the edges in the network by internal vali-
dation (see Section 7.2) to increase the inference reliability. Five,
the inference strategy might use external prior knowledge from
databases and literature (see Section 6). In this case, the neces-
sary amount of experimental data depends on the amount, type
and quality of such additional information and the capability of the
inference algorithm to adequately integrate this information during
modelling.

To summarize, there is a tight relationship between model com-
plexity, the amount/type of data required for inference and the
quality of the results. Due to this, the inference of more accurate (i.e.
complex, dynamic, large-scale) GRN models is impeded. The main
problem is that a more accurate modelling makes the correct model
much harder to find, because the size of the search space increases
exponentially with the number of unknown model parameters (the
so-called problem of dimensionality). In consequence, the modeller
has to counter the dimensionality problem in network inference, for
example by:

(i) increasing the amount of data by increasing the number of
measurements M;

(ii) reducing the number of network nodes N;
(iii) restricting the number of model parameters, e.g. by use of sim-

ple models and network connectivity constraints;
(iv) integrating specific prior knowledge about the network struc-

ture.

(i), the number of measurements M can be increased by addi-
tional experiments or by merging own gene expression data with
complementary data from external repositories, e.g. as in Faith et al.
(2007). Alternatively, D’haeseleer et al. (1999) proposed for time-
series data to simply interpolate additional time-points between
the actual measured time-points. This is justified by the fact that

gene expression levels change rather smoothly over time. However,
it was shown that interpolation did little to solve the dimensionality
problem (Wessels et al., 2001).

(ii), the number of network nodes N can be reduced by focus-
ing on features (genes, proteins, . . .) of special interest employing
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Fig. 3. Exemplary overview of the four main GRN modelling architectures. Here, the aim is to infer the regulatory interactions of three genes (the GRN graph on the top-right)
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ased on the expression data of these three genes for a handful of experiments (th
ene expression data as well as other available biological information. The four mode
hown here is illustrated by a single typical example of a possible realization of it
odel architectures than what is reflected by the given examples.

ethods for feature selection and/or feature mapping (see Section
).

(iii), by using less complex network models and biologically
otivated modelling constraints, the dimensionality of the model

earch space can be reduced. The most widely used modelling con-
traint is the sparseness constraint, which minimises the number
f edges in the network thereby reducing the number of (unknown)
odel parameters (see Section 6.1).
(iv), the integration of different types of biological data may aug-

ent the modelling and thus facilitates inference results of higher
uality (see Section 6.2).

.4. Data Pre-processing

Data pre-processing is a critical step in GRN reconstruction as
t affects the performance of the inference algorithms and thus the
nference results, i.e. the generated hypotheses. Methods for data
re-processing have to be applied specifically to different data types
nd experimental designs.

The analysis of large-scale data is a challenging task, not so much
ecause the amount of data is large, but because large-scale mea-
urement technologies possess high inherent variability. The two
ources of this variability are systematic errors (bias) and stochastic
ffects (noise). Systematic effects affect all measurements in a simi-
ar manner and thus can be nearly eliminated by data normalisation
Quackenbush, 2002). Stochastic effects cannot be corrected by pre-
rocessing, but can be quantified, in particular by the application
f repeated measurements (replicates).

Depending on the modelling approach further data manipula-
ions may be necessary. Several network inference methods require
very specific pre-processing of the data. For instance, interpolation
f time-series data is a frequently applied method. Furthermore,
any learning algorithms for the inference of differential equation

ystems (see Section 3.3) require the estimation of time derivatives
or each measurement point of the time-series, which can also be
one by interpolation (Chen et al., 1999; Yeung et al., 2002). Besides,

ome network formalisms require discrete gene expression values.
or instance, to infer Boolean networks, the measured expression
evels have to be converted into binary numbers. Note that such

data discretization is often non-trivial and has to be done with
dequate care.
expression matrix on the top-left). For modelling we may utilize (pre-processed)
rchitectures reflect the same GRN in different ways. Each of the model architectures
el formalism category. Note that there exist a lot more approaches for each of the

3. Network Model Architecture

Before inferring a GRN, the appropriate type of network model
architecture has to be chosen. The model architecture is a parame-
terised mathematical function that describes the general behaviour
of a target component based on the activity of regulatory compo-
nents. Once the model architecture has been defined, the network
structure (i.e. the interactions between the components) and the
model parameters (e.g. type/strengths of these interactions) need
to be learned from the data (see Section 5). Over the last years,
a number of different model architectures for reverse engineering
GRNs from gene expression data have been proposed. They cover
varying degrees of simplification and reflect distinct assumptions
of the underlying molecular mechanisms (Fig. 3).

In general, the network nodes represent compounds of inter-
est, e.g. genes, proteins or even modules (sets of compounds). As
described by van Someren et al. (2002a), model architectures can
be distinguished by (1) the representation of the activity level of the
network components. The concentration or activity of a compound
can be represented by Boolean (‘on’, ‘off’) or other logic values (e.g.
‘present’, ‘absent’, ‘marginal’), discrete (e.g. cluster labels), fuzzy
(e.g. ‘low’, ‘medium’, ‘high’) or continuous (real) values. Further-
more, network model architectures can be distinguished by (2)
the type of model (stochastic or deterministic, static or dynamic)
and (3) the type of relationships between the variables (directed
or undirected; linear or non-linear function or relation table).
Although many undirected network representations exist, the focus
of this review is on directed networks.

3.1. Information Theory Models

One of the simplest network architectures is the correlation
network (Stuart et al., 2003), which can be represented by an
undirected graph with edges that are weighted by correlation
coefficients. Thereby, two genes are predicted to interact if the
correlation coefficient of their expression levels is above some set

threshold. The higher the threshold is set, the sparser is the inferred
GRN.

Besides correlation coefficients, also Euclidean distances and
information theoretic scores, such as the mutual information,
were applied to detect gene regulatory dependencies (Steuer et
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l., 2002). The network inference algorithms RELNET (RELevance
ETworks; Butte and Kohane, 2000), ARACNE (Algorithm for the
everse engineering of Accurate Cellular NEtworks; Margolin et al.,
006; Basso et al., 2005) and CLR (Context Likelihood of Related-
ess; Faith et al., 2007) apply network schemes in which edges
re weighted by statistic scores derived from the mutual infor-
ation. Rao et al. (2007) proposed an asymmetric version of the
utual information measure to obtain directed networks. Like-
ise, graphical Gaussian models (GGMs) using partial correlations

o detect conditionally dependent genes also allow to distin-
uish direct from indirect associations (Opgen-Rhein and Strimmer,
007).

Simplicity and low computational costs are the major advan-
ages of information theory models. Because of their low data
equirements, they are suitable to infer even large-scale networks.
hus, they can be used to study global properties of large-scale reg-
latory systems. In comparison to other formalisms, a drawback
f such models is that they do not take into account that multiple
enes can participate in the regulation. A further disadvantage is
hat they are static.

.2. Boolean Networks

Boolean networks are discrete dynamical networks. They were
rst proposed by Kauffman (1969) and since then have been inten-
ively investigated for modelling gene regulation (Thomas, 1973;
ornholdt, 2008). They use binary variables xi ∈ {0, 1} that define
he state of a gene i represented by a network node as ‘off’ or ‘on’
inactive or active). Hence, before inferring a Boolean network, con-
inuous gene expression signals have to be transformed to binary
ata. The discretization can be performed, for instance, by cluster-

ng and thresholding using support vector regression (Martin et al.,
007). Boolean networks can be represented as a directed graph,
here the edges are represented by Boolean functions made up of

imple Boolean operations, e.g. AND ∧, OR ( ), NOT ( ). The chal-
enge of reverse engineering a Boolean network is to find a Boolean
unction for each gene in the network such that the observed (dis-
retised) data are explained by the model. Various algorithms exist
or the inference of Boolean networks, e.g. REVEAL (REVerse Engi-
eering ALgorithm; Liang et al., 1998). REVEAL was later extended
o allow for multiple discrete states as well as to let the current state
epend not only on the prior state but also on a window of previous
tates.

Boolean networks are limited by definition as gene expression
annot be described adequately by only two states. Nevertheless,
oolean networks are easy to interpret and as they are dynamic,
hey can be used to simulate gene regulatory events. In naïve
oolean network models there are no kinetic constants and other
ontinuous variables.

.3. Differential and Difference Equations

Differential equations describe gene expression changes as a
unction of the expression of other genes and environmental fac-
ors. Thus, they are adequate to model the dynamic behaviour of
RNs in a more quantitative manner. Their flexibility allows to
escribe even complex relations among components. A modelling
f the gene expression dynamics may apply ordinary differential
quations (ODEs):

dx = f (x, p, u, t) (1)

dt

here x(t) = (x1(t), . . ., xn(t)) is the gene expression vector of the
enes 1, . . ., n at time t, f is the function that describes the rate
f change of the state variables xi in dependence on the model
arameter set p, and the externally given perturbation signals u.
s 96 (2009) 86–103 91

Here, network inference means the identification of function f and
parameters p from measured signals x, u and t.

In general, without constraints, there are multiple solutions, i.e.
the ODE system is not uniquely identifiable from data at hand.
Thus, the identification of model structure and model parameters
requires specifications of the function f and constraints repre-
senting prior knowledge, simplifications or approximations. For
instance, the function f can be linear or non-linear. Evidently, regu-
latory processes are characterised by complex non-linear dynamics.
However, many GRN inference approaches based on differential
equations consider linear models or are limited to very specific
types of non-linear functions (Voit, 2000; De Jong, 2002; see Section
3.3.2).

There are further, more complex variants of differential equation
models, such as stochastic differential equations that are thought to
take into account the stochasticity of gene expression, which might
occur especially when the number of TF molecules is low (Kaern et
al., 2005; Climescu-Haulica and Quirk, 2007).

3.3.1. Linear Differential Equations
A linear model:

dxi

dt
=

N∑

j=1

wi,j · xj + bi · u, i = 1, . . . , N (2)

can be applied to describe the gene expression kinetics xi(t) of N
genes by N × (N + 1) parameters for (a) the N2 components wi,j of the
interaction matrix W and (b) N parameters bi quantifying, for exam-
ple, the impact of the perturbation u on gene expression. In general,
the simplification obtained by linearization is still not sufficient to
identify large-scale GRNs from gene expression data unequivocally.
Several approaches have been proposed to cope with this problem,
e.g. methods for inferring sparse interaction matrices by reducing
the number of non-zero weights wi,j (see Section 5.2).

Differential equations can be approximated by difference equa-
tions (discrete-time models). Thereby, the linear differential Eq. (2)
becomes the linear difference Eq. (3):

xi[t + �t] − xi[t]
�t

=
N∑

j=1

wi,j · xj[t] + bi · u, i = 1, ..., N (3)

In this way one obtains a linear algebraic equation system that
can be solved by well-established methods of linear algebra. Sin-
gular value decomposition (SVD) (Holter et al., 2001; Yeung et al.,
2002) and regularised least squares regression are the most promi-
nent ones that solve the linear equation system with the constraint
of sparseness of the interaction matrix. For instance, the LASSO
(Least Absolute Shrinkage and Selection Operator) provides a robust
estimation of a network with limited connectivity and low model
prediction error (van Someren et al., 2002b; see Section 5). Further
inference algorithms based on linear difference equation models
are NIR (Network Identification by multiple Regression; Gardner
et al., 2003), MNI (Microarray Network Identification; di Bernardo
et al., 2005) and TSNI (Time-Series Network Identification; Bansal
et al., 2006). Under the steady-state assumption, NIR and MNI use
series of steady-state RNA expression measurements, whereas TSNI
uses time-series measurements to identify gene regulatory interac-
tions (see also Bansal et al., 2007).

3.3.2. Non-linear Differential Equations
Complex dynamic behaviours such as the emergence of multi-
ple steady states (e.g. healthy or disease states) or stable oscillatory
states (e.g. calcium oscillations and circadian rhythms) cannot be
explained by simple linear systems. Instead, systems of cellular
regulation are non-linear (Savageau, 1970, Heinrich and Schuster,
1996). The identification of non-linear models is not only limited
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y mathematical difficulties and computational efforts for numer-
cal ODE solution and parameter identification, but also mainly by
he fact that the sample size M is usually too small for the reli-
ble identification of non-linear interactions. Thus, the search space
or non-linear model structure identification has to be stringently
estricted. For that reason, inference of non-linear systems employ
redefined functions that reflect available knowledge. Sakamoto
nd Iba (2001) used genetic programming to identify small-scale
etworks (up to three genes) by fitting polynomial functions f of
ifferential Eq. (1). Spieth et al. (2006) applied different search
trategies, such as evolutionary algorithms, for the inference of
mall-size networks (2, 5 and 10 genes). They studied different
ypes of non-linear models: generalized linear network models
Weaver et al., 1999), S-systems (Savageau, 1970; Kimura et al.,
005) and models composed of a linear interaction matrix and an
dditional non-linear term (called ‘H-systems’).

Exemplarily, S-systems model the gene expression rate by exci-
atory and inhibitory components:

dXi

dt
= ˛i

N∏

j=1

Xgi,j
j − ˇi

N∏

j=1

Xhi,j
j (4)

Here, ˛i and ˇi are positive rate constants and gi,j and hi,j are
inetic exponents. Non-linear models such as S-systems consist of
any parameters demanding a large number of experiments to fit

hem to the data (Vilela et al., 2008; Voit, 2008). Therefore, the
roblem of data insufficiency still limits the practical relevance of
on-linear models.

.4. Bayesian Networks

Bayesian networks (BNs) reflect the stochastic nature of gene
egulation and make use of the Bayes’ rule. Here, the assumption is
hat gene expression values can be described by random variables,
hich follow probability distributions. As they represent regulatory

elations by probability, BNs are thought to model randomness and
oise as inherent features of gene regulatory processes (Friedman et
l., 2000). Most importantly, BNs provide a very flexible framework
or combining different types of data and prior knowledge in the
rocess of GRN inference to derive a suitable network structure
Werhli and Husmeier, 2007; see also Section 6.2). Besides, BNs
ave a number of features that make them attractive candidates for
RN modelling, such as their ability to avoid over-fitting a model to

raining data and to handle incomplete noisy data as well as hidden
ariables (e.g. TF activities). Methods for learning BNs are covered
n detail in Heckerman (1996) and Needham et al. (2007). In short,
here are three essential parts for learning a BN:

Model selection. Define a directed acyclic graph (DAG) as candidate
graph of relationships.
Parameter fitting. Given a graph and experimental data find the
best conditional probabilities (CP) for each node.
Fitness rating. Score each candidate model. The higher the score,
the better the network model (the DAG and the learned CP dis-
tribution) fits to the data. The model with the highest score
represents the GRN inference result.

Thereby, the critical step is ‘model selection’. The naïve approach
s to simply enumerate all possible DAGs for the given number of
odes (so-called brute-force search). Unfortunately, the number of
AGs on N nodes, grows super-exponentially. Therefore, as for other

odel types, heuristics are needed to efficiently learn a BN (see

ection 5).
BNs can be learned based on discrete (often Boolean) and contin-

ous expression levels. Thereby, the underlying probabilistic model
ight be, e.g. a multinomial distribution or a Gaussian distribution.
Fig. 4. Difference between static BNs (left panel) and dynamic BNs (right panel). A
feedback loop from gene A to gene B to gene C and back to gene A is not allowed in
static BNs. However, this feedback loop can be represented in a dynamic BN.

BNs of continuous nodes are typically harder to infer from experi-
mental data, because of their additional computational complexity.
However, their inference does not require discretisation of the data.
Moreover, static and time-series data can be used to reconstruct
static and dynamic Bayesian networks (DBNs), respectively. As the
former have the structure of a DAG, they cannot capture feedback
loops. In contrast, DBNs separate input nodes from output nodes,
i.e. each molecular entity is represented by a regulator node (rep-
resenting the expression level at time t) as well as by a target node
(representing the expression level at time t + �t) (Van Berlo et al.,
2003; Perrin et al., 2003). This way, DBNs are able to describe regula-
tory feedback mechanisms, because a feedback loop will not create
a cycle in the graph (Fig. 4).

BNs are widely used for GRN reconstruction (see also Section 6).
As an example, Rangel et al. (2004) inferred a 39-gene linear state-
space model – a subclass of DBNs – of T-cell activation from gene
expression time-series data. Noteworthy, BANJO is a ready-to-use
software application for BN and DBN inference (Hartemink et al.,
2001).

3.5. Further Network Model Architectures

Not all GRN modelling techniques can be assigned to one of
the four categories described above. To complete this section,
three of these approaches are mentioned here exemplarily: Segal
et al. (2003) identified regulatory modules in S. ceresivisiae and
used them for modelling the regulation program by regression
trees. Thereby, each decision node in the tree corresponds to a
regulating gene. The so-called Dynamic Regulatory Events Miner
(DREM) algorithm introduced by Ernst et al. (2007) uses hidden
Markov models for identification and annotation (by TF names)
of so-called bifurcation points in gene expression profiles. As a
third example, Mordelet and Vert (2008) decomposed the GRN
inference into a large number of local binary classification prob-
lems, which focus on separating target genes from non-targets for
each TF.

4. Feature Selection and Feature Mapping

To reliably identify the structure and parameters of a model, the
model size/complexity must suit the experimental data at hand. In
essence, both feature selection as well as feature mapping reduce
the complexity of the model by selecting only relevant features
for network reconstruction. While analysing gene expression data,
genes that are non-responsive or not well measured in the data are
typically removed during feature selection. With feature mapping

molecular entities can be combined into functional entities that
represent the common behaviour of its constituents or that reflect
a particular biological function. Thus, a functional entity might be
for instance a cluster of co-expressed genes or a group of proteins
with the same function. Feature mapping is an excellent way
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o remove redundant information. However, the modeller has
o carefully choose which dimensionality reduction approach is
ppropriate to (a) obtain a sufficiently large network to investigate
he biological phenomena under study while (b) still being able
o obtain a reliable inference of the underlying network. Filtering
ifferentially expressed genes and clustering co-expressed genes
re widely applied techniques to reduce the number of model vari-
bles. Advanced feature selection/mapping approaches combine
ata- and knowledge-driven methods.

.1. Data-driven Feature Selection

Network reconstruction approaches often consider only genes
hat show significant changes in expression under the experimen-
al conditions studied. For instance, Wang et al. (2006) narrowed
own the list of relevant genes of S. cerevisiae to 140 genes based
n 2-fold change up or down in at least 20% of the expression lev-
ls across all data sets. Guthke et al. (2005) selected 1336 cDNA
eatures (out of 18,432 cDNAs representing 7619 unique genes)
y requiring a 8-fold up- or downregulation after perturbation
y infection. van Someren et al. (2006) studied 101 murine genes
out of 9596) that showed significant changes in expression with
espect to the initial state under their experimental conditions.
artin et al. (2007) selected murine genes represented by 5085

robesets (out of 45,119 probesets representing ∼34,000 unique
enes) that exhibited differences in expression between control
ells and IL-2-stimulated cells using the following inclusion cri-
eria: (1) change call other than ‘no change’, (2) same trend of
hange call (‘increase’, ‘decrease’), (3) ‘present call’ and ‘signal
ntensity > 100’ and (4) at least a 1.5-fold difference in expres-
ion between the two compared conditions. As a remark, the
ignificance of expression change, often used for filtering can-
idate genes, can be assessed using t-statistics or its variations
Pan, 2002).

.2. Data-driven Feature Mapping

Another way to reduce the number of network components is
he identification of clusters of co-expressed and/or co-regulated
enes or proteins. Methods for cluster analysis have been widely
pplied to find functional groups under the assumption that genes
hich show similar expression patterns are co-regulated or part

f the same regulatory pathway. Afterwards, cluster-representative
enes or the mean expression level of all genes in a cluster might be
sed for GRN inference (D’haeseleer et al., 2000; Wahde and Hertz,
000; Mjolsness et al., 2000; van Someren et al., 2000; Guthke et
l., 2005, 2007; Bonneau et al., 2006).

Clustering does not guarantee that genes within a cluster share
he same biological function. Nevertheless, a common subsequent
nalysis step is to annotate each cluster with a functional cat-
gory that is representative for that cluster (Gibbons and Roth,
002). From a statistical learning perspective, clustering methods
an be subdivided into (a) combinatorial algorithms, (b) mixture
odelling, and (c) mode seeking (Hastie et al., 2001). Hierarchi-

al algorithms are still frequently employed, although they have
een criticized (Morgan and Roy, 1995; Radke and Möller, 2004)
nd more reliable methods are available. For instance, k-means
nd fuzzy c-means (Granzow et al., 2001; Dougherty et al., 2002)
ere used in conjunction with GRN inference (Guthke et al., 2005).
part from that, Mjolsness et al. (2000) applied an expectation-
aximization algorithm for clustering by mixture modelling and
sed the mean time-courses of ‘aggregated genes’ for inferring a
ynamic network model.

A complete description of clustering algorithms is beyond the
cope of this review, and the reader is referred to the literature for
ore on this subject (Shannon et al., 2003).
s 96 (2009) 86–103 93

4.3. Knowledge-driven Feature Selection/Mapping

As feature selection/mapping is a crucial step in GRN inference,
one might not only exploit the limited set of gene expression data
but also employ alternative sources of biological information. One
way to do this is to use knowledge about which genes code for
transcription factors. For instance, one can start to select (known or
putative) TFs, which are differentially expressed or just belong to a
certain process of interest. Then, further genes can be additionally
selected on the basis of their (known or putative) regulation by one
or more of these TFs, e.g. as done by Bernard and Hartemink (2005).
This selection can be based on protein–DNA binding data or based
on results from searching for regulatory motifs in sequence infor-
mation. However, a drawback of this feature selection approach is
that the activity of TFs not necessarily correlates with their changes
in transcript abundance.

Alternatively, one can focus on modelling particular pathways
or biological processes. Here, annotation databases (see Section
2.1; Table 1) provide functional classifications that can be used to
directly select genes of a specific pathway, process or cellular com-
ponent (see for an example: Hartemink et al., 2002). In analogy, one
can select genes that are associated with the same biological con-
text based on text mining (e.g. Tamada et al., 2003). A drawback of
these solely knowledge-based approaches is that gene expression
levels are not taken into account, and thus relevant features, which
are not yet correctly annotated might be missed, while features that
do not play a role under the particular conditions might be falsely
included.

A more sophisticated way to reduce the number of features is to
analyse the expression of specific groups of genes instead of individ-
ual genes. Using annotation terms in conjunction with expression
levels allows to find functional modules, which play a key role in the
particular system. Current methods that deduce a biological mean-
ing, i.e. an association to functions and processes, from large-scale
gene expression data, consist of two steps. At first, a group of genes
is defined (e.g. by data-driven feature selection/mapping). Then,
the enrichment of biologically relevant terms (derived from anno-
tation databases) in these genes can be determined. For example
using Gene Ontology one can test whether particular functions or
processes are specifically related to the group of genes. A lot of freely
available tools are based on this approach (Khatri and Draghici,
2005). These and other annotation enrichment methods uncover
functional modules of genes. This allows the modeller to concen-
trate on modelling the interactions between just those modules or
the involved genes.

5. Learning Algorithms for Network Inference

In general, network reconstruction is performed by applying a
learning algorithm that fits the output of the mathematical model
to the provided experimental data. The choice of an appropri-
ate learning algorithm is mainly influenced by the selected model
architecture (see Section 3) as well as by the quality and the quantity
of the available data. Furthermore, if prior knowledge about gene
regulatory interactions is available, the learning algorithm should
be able to incorporate this knowledge into the final model (Section
6).

In network inference, two tasks can be distinguished: (1) the
estimation of the model structure and (2) the estimation of the
model parameters. Structure optimization corresponds to the prob-
lem of finding the network connectivity or topology that best

explains the observed data and that simultaneously fulfils con-
straints representing the available knowledge, e.g. that takes the
network-sparseness requirement into account (van Someren et
al., 2001; Filkov, 2005). Parameter estimation concerns the prob-
lem of identifying the corresponding model parameters once a
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Fig. 5. Overview of structure optimization methods that can be applied

odel structure is given (Section 5.1). To capture the network
parseness, most network inference approaches try to reduce the
n-degree for each node. In many of these approaches the struc-
ure is optimized explicitly and parameter optimization becomes
n embedded task of structure optimization (see Section 5.2.1).
lternatively, there exist several approaches where the structure

s implicitly determined during parameter estimation (Section
.2.2).

The estimation of other systems biology models, i.e. metabolic
etworks and signal transduction networks, is characterised
y a mainly knowledge-driven determination of the model
tructure. Here, the focus lies on parameter estimation meth-
ds that surmount inherent ill-conditioning and multi-modality
Rodriguez-Fernandez et al., 2006; Moles et al., 2003). In contrast,
n GRN inference a single node function has usually few parame-
ers and nonlinearity is taken into account only in rare cases (e.g. in
-system models). Therefore, the decisive problem is the solution
f the structure optimization problem. Note that the main focus of
his section is on learning algorithms for differential and difference
quation systems.

.1. Parameter Optimization

The optimization of the parameters of a model is connected with
he chosen model architecture and the scoring function that has to
e optimized. The scoring function always contains a term quanti-
ying the fit of the predicted model outputs to the gene expression
ata, also referred to as data-fit. Dependent on the assumed noise
istribution, measures for this criterion are, e.g. the sum of squared
rrors (e.g. Mjolsness et al., 2000; Yeung et al., 2002; van Someren
t al., 2006) or the maximum likelihood function. For each type of
odel architecture a large number of standard parameter optimiza-

ion techniques are available, e.g. as presented Polisetty et al. (2006)
or Generalized Mass Action models and by Vilela et al. (2008) for
-systems.

.2. Structure Optimization

Deriving the model structure or the connectivity between the
odes is a challenging combinatorial optimization problem. For

ach node function the most likely combination of regulators has to
e found. The total number of possible combinations for each node
unction is 2N − 1, where N is the number of nodes in the network.
or a relatively small network with N = 20 nodes the total number of
ossible regulatory combinations is about 1,000,000 for each node.
ticular for the learning of linear differential/difference equation models.

Consequently, even for small networks it is an impractical task to
test all possible network structures. However, the number can be
significantly decreased by the assumption of limited connectivity
between the genes. If, e.g. the number of regulators is restricted to
four and N = 20, then only 6195 regulatory combinations are possi-
ble. In this case, one might test all combinations by an exhaustive
(brute-force) search.

A general rule in network reconstruction is that as the connec-
tivity of the network increases, the model will better fit the data.
However, several difficulties are concerned with higher-connected
networks. First of all, genes are assumed to be regulated by a limited
number of regulators (Arnone and Davidson, 1997; see Section 6.1).
Secondly, the reliability of the parameter estimation deteriorates
when the number of parameters increases. Due to the dimension-
ality problem (i.e. many parameters and few data), many network
structures of sufficiently high connectivity can describe the same
data equally well (Krishnan et al., 2007). Consequently, it is diffi-
cult to reliably determine which of these network structures is the
best, making the inference results not robust. Therefore, a compro-
mise between model quality and model complexity has to be found,
which is known as the bias-variance trade-off. A general overview of
structure optimization methods applied in experimental modelling
is given in Nelles (2001).

As a remark, some network inference methods are characterised
by the decomposition of the overall structure optimization problem
into separate optimization steps. Then, in each step, the most likely
regulators of a single gene have to be found.

5.2.1. Explicit Structure Optimization
Explicit structure optimization methods examine GRN mod-

els with different topology and compare them by means of their
scoring function (from Section 5.1). The scoring function is often
augmented with a model complexity term aimed to prevent data
over-fitting and ensure network sparseness. Such scoring functions
were introduced for different network modelling formalisms, for
instance BNs. Here, approximations such as the Bayesian Informa-
tion Criterion (BIC) score are commonly used to assess the degree to
which the resulting structure explains the data, while at the same
time avoiding overtraining by penalizing the complexity (number
of parameters) of the model.
Following a given strategy, interactions are added and removed
trying to obtain a structure with a better score. Since testing all pos-
sible combinations of interactions can only be performed for very
small networks, different structure optimization strategies exist
that systematically search in the space of possible solutions (i.e. net-
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ork structures). As shown in Fig. 5, explicit structure optimization
trategies comprise the simple testing of all possible combinations,
euristic search methods, evolutionary algorithms and simulated
nnealing (van Someren et al., 2001). Finally, given the modelling
rchitecture and a network structure optimization strategy, a model
an be estimated from the given data. The estimation might be
upported by prior knowledge and additional types of data, e.g. by
dapting the scoring function (see Section 6).

In case of very small networks or strong restrictions, e.g. limiting
he number of regulators per gene, all possible combinations can
e tested. For instance, Chen et al. (1999) suggested to simply test
ll combinatorial choices that have at most k regulators for a lin-
ar differential equation system. This brute-force strategy is often
pplied for inferring Boolean networks, too (e.g. Akutsu et al., 1999;
artin et al., 2007).
Heuristic search algorithms apply rules-of-thumb or guesses to

uide the search in direction towards plausible solutions (most
ikely solutions first). Well known heuristic search techniques are,
.g. best first search, beam search and hill-climbing. In GRN infer-
nce, search algorithms might start from an initial topology and
ither add or remove interactions or reverse the direction of causal-
ty. Three types of main search strategies can be distinguished:
orward selection (growing), backward elimination (pruning) and
tepwise selection. Forward selection methods start with a sim-
le model (e.g. without interactions) and add the most significant

nteractions until a stopping criterion is met. Alternatively, back-
ard elimination methods start with a fully connected model and

emove the least significant interactions until a stopping-criterion
s met. Stepwise selection methods combine forward selection and
ackward elimination.

Note that similar heuristic structure learning algorithms are
sed for the inference of different model architectures, e.g. in BN

nference to identify the most probable structure of a GRN learned
rom data (Heckerman, 1996; Needham et al., 2007). For the infer-
nce of BN models the REVEAL algorithm introduced by Liang et al.
1998) applies a forward selection algorithm, where subsequently
ll input pair combinations with k = 1, 2, 3. . . regulators are exam-
ned. In Weaver et al. (1999) an advanced backward elimination
trategy was suggested that removes recursively the interactions
ith the smallest parameter values, whereas the parameters are

e-estimated in each iteration. Chen et al. (2001) proposed an infer-
nce method for an information theoretical model where first,
utative pair-wise interactions are derived by correlating peaks in
he time-series data and afterwards, less important interactions
re eliminated. The NetGenerator algorithm (Toepfer et al., 2007;
uthke et al., 2005) combines forward selection and backward
limination to fit a system of linear or non-linear differential equa-
ions. Thereby, in order to avoid over-fitting (and to obtain a sparse
etwork model), the inclusion or removal of interactions was tied
o specific conditions, e.g. (i) an increase in model complexity must
ead to a considerably improved model fit and (ii) the number of

odel interactions must not exceed a predefined limit.
The Inferelator inference method proposed by Bonneau et al.

2006) is based on a more complex differential equation system. In
ontrast to other approaches, the combination of regulators is not
estricted to simple weighted sums. A special encoding of TF inter-
ctions allows to accommodate combinatorial logic (AND, OR, XOR)
nto the model. Here, this encoding was restricted to pair-wise inter-
ctions. Then, to fit a model for each gene, a combination of explicit
nd implicit structure optimization is performed: explicit structure
ptimization is utilised to get a selection of potential single TFs and

air-wise interactions. Implicit structure optimization selects the
est combination for the final model using LASSO (see Section 3.3).

Different heuristic search strategies and genetic algorithms for
he inference of GRNs using artificial data were compared by van
omeren et al. (2001).
s 96 (2009) 86–103 95

5.2.2. Implicit Structure Optimization
Implicit structure optimization is reached by optimising the

model parameters using an extended scoring function. In addition
to a model fitting term this extended scoring function includes a
model complexity term which directly penalises the number of
network interactions. This is also known as a form of regularisa-
tion. Regularisation reduces the effective number of parameters
for each node function while the nominal number of optimized
parameters corresponds to the total number of possible regu-
lators. During parameter optimization the model is adopted to
the measured data, while parameters not required for fitting are
driven to zero. In consequence, a sparsely connected network
results. Different implicit structure optimization methods can be
distinguished with respect to the applied regularisation technique.
Mjolsness et al. (2000) used a weight decay term that penalises
the sum of the squared interactions weights within a non-linear
differential equation system. A similar approach is proposed by
van Someren et al. (2006). Their LARNA method (Least Absolute
Regression Network Algorithm) minimises the sum of the abso-
lute weights of a linear difference equation model. In Yeung et al.
(2002) a two step procedure is applied to infer linear differential
equations systems including SVD and subsequent robust regres-
sion.

6. Integration of Diverse Biological Information

As mentioned throughout this review, the inference of a large-
scale GRN is complicated due to the combinatorial nature of the task
and the limitations of the available data. Therefore, the use of prior
knowledge and biologically plausible assumptions with respect to
the model structure is essential to support the reverse engineering
process. In addition, information from alternative experiments, var-
ious databases as well as from the scientific literature itself should
be incorporated.

6.1. General Network Properties and Modelling Constraints

Several general properties of GRNs can be used for network
reconstruction, including sparseness, scale-freeness, enriched net-
work motifs and modularity. The most common and important
design rule for modelling gene networks is that their topology
should be sparse. Sparseness reflects the fact that genes are reg-
ulated only by a limited number of genes (Arnone and Davidson,
1997). Note that the term ‘sparse’ stands for limited regulatory
inputs per gene, thus a low in-degree is desired. However, some
so-called master genes may control a large part of the entire net-
work, thus the out-degree is unrestricted. Enforcing the sparseness
property during network identification has the benefit that it sig-
nificantly reduces the number of model parameters to be estimated
and consequently improves the quality of network inference. Tech-
niques to constrain the number of regulators per gene are covered
in Section 5.2. For instance, when scoring candidate models during
structure optimization one might use scores that have a measure
of how well the model fits the data, and a penalty term to penalise
model complexity. Note that a drawback of limiting the number of
edges in the network is that one may miss redundant paths in the
network such as feed-forward loops.

Several studies have shown that the distribution of node degrees
in biological networks often tends to have the form of a power law
(Jeong et al., 2000; Bork et al., 2004), i.e. the fraction P(k) of nodes
in the network having k connections goes as P(k) ∼ k−� , where �

is a constant. In these, so-called scale-free networks, most of the
genes are sparsely connected, while a few are very high connected.
Scale-freeness ensures the performance and robustness of net-
works with respect to random topological changes and is therefore
an organising principle of biological structures (Jeong et al., 2000).
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ot surprisingly, large-scale GRN models (information theory mod-
ls) inferred from human gene expression data also demonstrate
cale-free structures (Jordan et al., 2004; Basso et al., 2005). As
cale-freeness is a stronger assumption than sparseness, it seems
easonable to utilize this property as a modelling constraint. Scale-
reeness has been implemented by Chen et al. (2008) for a method
hat infers undirected edges based on a thresholded ranking of
he most correlating genes by specifying whether a node is a core
ode or a periphery node. It came to our attention that at least
ne group considers scale-freeness during inference of dynamic
RNs (Westra, 2008). They first introduce a measure that compares
ow well the degree-distribution of a difference equation network
odel fits a perfect scale-free network. Then, they iteratively esti-
ate the model parameters while maximizing this measure and

ptimizing � until a convergence criterion is met. Alternatively, the
oncept of scale-freeness can be taken into account indirectly by
imiting the number of candidate regulators in the network. Pre-
efining known (and putative) TFs as regulators is a widely used
pproach to limit the model search space (e.g. Chen et al., 2001;
egal et al., 2003; Bonneau et al., 2006). However, one should be
ware that the expression level of a TF does not necessarily reflect
ts activity.

Another property of natural regulatory networks is that they
re highly structured. The low-dimensional connection structures
n these networks follow regular hierarchies. This facilitates the
ecomposition of biological networks into basic recurring modu-

ar components that consist of only a few genes, so-called network
otifs (Shen-Orr et al., 2002; Lee et al., 2002). Consequently,

egulatory network motifs open the way to structured model iden-
ification. However, the use of such structural motifs is still under
iscussion. For instance, the handling of feedback loops is diverse
nd depends on the biological problem. Some authors recon-
truct networks that are restricted to a hierarchical structure, e.g.
artemink et al. (2002) using a BN formalism, whereas others forbid

hort loops. For example, ARACNE aims to remove indirect interac-
ions from the inferred network. Thereby, if triplets of genes are fully
onnected, the edge with the weakest statistical relevance will be
liminated (Margolin et al., 2006). Apart from this, many reverse
ngineering algorithms are completely unrestricted to allow even
hort positive or negative feedback loops within the system (e.g.
iang et al., 1998; van Someren et al., 2002b).

Modularity is also an important property of GRNs. It is evi-
ent that genes share functionality and often act together, thus
ppearing to have a decentralised, redundant organisation. This
roperty is well supported by the common occurrence of clusters
f strongly co-expressed genes and correspondingly strong func-
ional enrichment. The concept of modularity is important for the
econstruction of GRNs as it allows to tackle the data insufficiency
roblem. Therefore, a widely used approach is to group genes based
n functional similarities or similar expression patterns (see Sec-
ion 4.2) and then to model the regulatory interactions between
hose modules to get a higher-level view of gene regulatory mech-
nisms (e.g. Segal et al., 2003; Bar-Joseph et al., 2003; Guthke et al.,
005).

.2. Integration of Heterogeneous Data

Many techniques have been proposed to identify GRNs from
ranscriptome data (e.g. obtained by DNA microarray experiments).
ome authors derived dynamic network models from time-course
ene expression data, e.g. D’haeseleer et al. (1999), van Someren

t al. (2002b), Guthke et al. (2005). Others have utilized static
xpression data for network inference. For instance, in the study
f Rung et al. (2002) an information theoretical model of the GRN
f yeast was reconstructed from expression data of 274 different
ingle gene deletion mutants. Further groups used both steady-
s 96 (2009) 86–103

state and temporal measurements to compute hypothetical GRNs,
e.g. of Halobacterium (Bonneau et al., 2006) and E. coli (Faith et al.,
2007).

Although, DNA microarray data are widely used in the field of
network inference, the reconstruction of GRNs using microarray
data alone is inherently bounded as the information content of
such data is limited by technical and biological factors. Therefore,
more sophisticated methods have been developed to reconstruct
the structure and dynamics of GRNs more reliably by incorporat-
ing other kinds of biological information. For instance, information
on molecular interactions is accessible in many ways (see Section
2.1; Table 1) and thus can augment GRN modelling. Prior knowl-
edge and additional large-scale experimental data also facilitate
the reconstruction of more mechanistic models. Note that the prior
knowledge utilized must suit the given data and the scientific ques-
tion of the study.

An integrative learning strategy often consists of two steps. First,
a template of the network is built using various levels of additional
information, e.g. from databases and the literature. This template
represents a supposition of the real underlying network topology.
Second, an inference strategy is applied that fits the model to the
data while taking the template into account. The template infor-
mation can be incorporated into the network inference process,
e.g. in Bayesian frameworks by appropriately setting prior proba-
bilities of the network structure. A more general approach is to let
the template adapt the cost function or to simply use the template
to constrain explicit search methods.

A BN is a good representation of the combination of prior knowl-
edge and data because it reflects both causal and probabilistic
semantics. More exactly, the integration of biological knowledge
can be realised by inferring the model in a maximum a posteriori
sense. Formally, the probability distribution for a model � given data
D and background knowledge � is according to the Bayes’ theorem:
p(�|D, �) = p(�|�)p(D|�, �)/p(D|�).

The probability distributions p(�|�) and p(�|D, �) are commonly
referred to as the prior and posterior for �, respectively. p(D|�, �) is
the likelihood of the “data given model”, i.e. describes the fitness of
a model to the data, and we assume here that D and � are indepen-
dent. If prior knowledge is available, the prior defines a function
that measures the agreement between a given network and the
biological prior knowledge (template) that we have at our disposal.
There are many types of priors that may be used, and there is much
debate about the respective choice. Heckerman (1996), Needham
et al. (2007) as well as Werhli and Husmeier (2007) are excellent
tutorials on learning with BNs using prior knowledge. Commonly
used heuristics to learn BNs (i.e. to identify the most probable GRN
structure) are covered in Section 5.

As shown for BNs inferred from synthetic data, the integration
of prior knowledge about the network topology increases the net-
work reconstruction accuracy (Le et al., 2004; Geier et al., 2007). As
a concrete example, Imoto et al. (2003) derive GRNs from microar-
ray gene expression data, and use biological knowledge (regulatory
interactions from the Yeast Proteome Database) to effectively favour
biologically relevant network structures. Thereby, according to the
BN framework explained before, the fitness of each model to the
data was first measured and subsequently biological knowledge
was input in the form of a prior probability for structures (in this
case expressed in terms of an energy function). Then, the posterior
probability for the proposed GRN was the product of the fitness and
the prior probability of the structure. With this in mind, TF–DNA
binding data was applied complementary to DNA microarray data.

In the work of Hartemink et al. (2002), TF–DNA interactions found
by ChIP analysis were incorporated into the modelling of a network
of 32 selected yeast genes. Thereby, BN models that failed to include
an edge where the location data suggested one were eliminated
from consideration a priori (by setting p(�|�) = 0). In a later work
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y Bernard and Hartemink (2005), these constraints were relaxed.
ere, edges for which location data indicates TF–DNA interactions
ere more likely though not forcibly included in the model, consid-

ring that the prior knowledge is not infallible. Similarly, TF–DNA
nteractions predicted by analysing promoter DNA sequences for
FBS were used in combination with gene expression data (Tamada
t al., 2003; Jensen et al., 2007). Information on protein–protein
nteractions have also been used to refine GRNs estimated from
xpression data (Nariai et al., 2004). Here, the biological impli-
ations of protein–protein interactions were incorporated in the
earning scheme by adding nodes representing protein complexes

hen the resulting BN structure is better suited to reflect the
ata.

The application of BNs for knowledge supported network infer-
nce is an active field of research. However, analogously, the
ncorporation of prior knowledge can be realised within differ-
nt inference architectures by appropriately setting a model fitness
coring function (e.g. as a weighted sum of data-fit and template-
t). Variants of this approach have been proposed for Boolean
etworks (Birkmeier, 2006), linear difference equation models
Yong-A-Poi, 2008; Koczan et al., 2008) and non-linear differential
quation models (Spieth et al., 2005). For instance, a linear differ-
nce equation model can be inferred using prior knowledge by an
daptation of the LASSO method. The LASSO fits the model to the
ata in a least-squares sense subject to

∑
j|ˇj| ≤ s, s > 0. Because

f the nature of this constraint it tends to produce some coefficients
j (model parameters) that are exactly zero and hence gives sparse,

nterpretable models (the lower s, the sparser the resulting model).
ow, a template (i.e. prior knowledge) can be used by assigning dif-

erent weights to the coefficients:
∑

jw̃j|ˇj| ≤ s, s > 0. Thereby, a
elatively low weight w̃j provokes that the edge corresponding to
j is preferred to be in the final model. This concept was applied

o integrate human microarray data with gene regulatory interac-
ions obtained by text mining by Yong-A-Poi (2008) and Koczan et
l. (2008), in which w̃j was defined as a constant and as function of
j, respectively.

However, whenever heterogeneous data and additional infor-
ation from the literature are incorporated into the inference

rocess, one has to keep in mind that the quality of the inferred
odels always depends on the quality and completeness of this

dditional/prior knowledge. Today, S. cerevisiae is one of the best-
tudied model organisms. It is hence not surprising that a lot of
RN modelling studies focused on this organism (Hartemink et
l., 2002; Rung et al., 2002; Bar-Joseph et al., 2003; Segal et al.,
003; Imoto et al., 2003; Tamada et al., 2003; Nariai et al., 2004;
ernard and Hartemink, 2005; Jensen et al., 2007; Larsen et al.,
007). As more and more specific information becomes available,
he inference of (dynamic) network models supported by diverse
ources of biological knowledge will be more frequently carried
ut for other organisms as well. A so far underexplored topic is
he trade-off between data-fit and confidence in the prior knowl-
dge, i.e. the difficulty to conveniently set the confidence associated
ith the prior knowledge relative to the expected noise in the
ata.

. Network Validation and Assessment of the Network
nference Methods

Network validation consists of assessing the quality of an

nferred model with available knowledge. For quantitative vali-
ation of an inferred GRN, it is necessary to employ a scoring
ethodology that evaluates the model with respect to (a) informa-

ion already used to generate the model (internal validation) and (b)
nformation independent from the information used to reconstruct
he network (external validation).
s 96 (2009) 86–103 97

7.1. Scoring Methodology

In general, the quality of a GRN model can be evaluated by the
answer to one or both of the two questions:

(a) Does the model correctly predict the behaviours of the GRN?
(b) Does the model represent the true structure of the system?

Answering the first question, one compares the simulated
behaviour of the model system with the measured or observed
behaviour of the real system. This can be quantified by cost func-
tions that are also used for model optimization as discussed in
Section 5. Answering the second question, one needs at least partial
knowledge about the true interactions, which is generally incom-
plete, uncertain or difficult to obtain (especially when modelling
a network of gene modules) in practice. For the assessment of
network inference methods one might overcome this problem by
employing synthetic data generated from artificial networks (see
Section 7.4). Supposing that a representation of the true structure of
the network is known or can be obtained (e.g. by direct experimen-
tal verification or database search), the predicted network structure
can be compared to this ‘true network’ based on a variety of perfor-
mance measures. To this end, the number of truly (T) and falsely (F)
predicted regulatory edges is counted, and the presence or absence
of interactions between nodes is referred to as positive (P) or neg-
ative (N) respectively. Now, the following numbers can be defined:

• TP = the number of true positives, i.e. the number of correctly
inferred edges;

• FP = the number of false positives, i.e. the number of inferred
edges that are incorrect;

• TN = the number of true negatives, i.e. the number of missing
edges in the inferred network that are also missing in the true
network;

• FN = the number of false negatives, i.e. the number of missing
edges in the inferred network that are an edge in the true network.

Note that this nomenclature is based on a binary classification of
edges, i.e. does an edge occur in the network or not. This approach
is sufficient in most cases as it can be applied on both directed and
undirected networks. However, to distinguish between inhibiting
and activating effects, similar counts could be defined for the three
classes of ‘activation’, ‘inhibition’ or ‘no effect’. For instance, the
situation of having “inferred an activation” while an inhibition was
expected might be counted as a false positive prediction. In rare
cases, one might even want to assess how close the strength of
interactions was inferred (e.g. using the Euclidean metric on the
expected and inferred continuous model parameters).

Based on the previously defined binary counts, performance
scores can be computed. The ‘recall’ or ‘sensitivity’ is defined by
TP/(TP + FN) and denotes the fraction of correctly identified interac-
tions in relation to the number of expected interactions. ‘Precision’
is determined by TP/(TP + FP) and denotes the fraction of correctly
identified interactions out of all predicted interactions. ‘Specificity’
computed by TN/(TN + FP) measures the proportion of non-existing
edges (number of potential edges – number of inferred edges)
which are correctly identified. Further commonly used scores are
the false positive rate (=FPR = 1 − specificity) and the false discovery
rate (=FDR = 1 − precision). Note that each of these scores is calcu-
lated only from two numbers out of {FN, FP, TP, TN}, i.e. each score is
hardly informative when used alone. For instance, an inferred fully-

connected network will result in a recall equal to 1, but is obviously
not biologically meaningful.

Typically, when inferring a GRN one (a) has a ranking on the
edges reflecting the reliability of the predictions (e.g. an ordering
on pair-wise computed correlation coefficients of an information
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heory model) or (b) can adjust the parameters of the infer-
nce learning scheme to obtain networks of low, moderate and
igh connectivity. Then, the performance of the network infer-
nce algorithm can be visualised as a precision-versus-recall curve
PRC-curve). The curve results from increasing the number of
dges predicted following (a) or (b). Alternatively, a similar curve
esults when visualising recall versus FPR (receiver operating char-
cteristic or simply ROC-curve). Both, PRC-curve and ROC-curve
ave advantages and disadvantages, thus they are usually used
ogether to evaluate the performance of different inference tech-
iques (Soranzo et al., 2007; Stolovitzky et al., 2007). In general,
he ROC analysis is only valid for the binary classification problem
ndicated above, but allows to directly compare the inference qual-
ty against a random prediction by calculating the area under the
urve (AUC), which is often used as a single metric in benchmark
ests. An AUC(ROC) close to 0.5 corresponds to a random forecast,
UC(ROC) < 0.7 is considered poor, AUC(ROC) > 0.8 good (Soranzo et
l., 2007). However, since GRNs are sparse, FP might far exceed TP.
hus, specificity (1 − FPR) which is used in ROC analysis, is inappro-
riate as even small deviations from a value of 1 will result in large
P numbers. For this reason, the PRC-curve can be a more useful
omponent for GRN performance evaluation.

.2. Internal Validation

In statistics, there are different resampling techniques to eval-
ate the generalization performance or robustness of a model, e.g.
ubsampling, bootstrapping and perturbation. Subsampling, e.g.
ross-validation, and bootstrapping are based on splitting the avail-
ble data into training and test data sets. In k-fold cross-validation,
he data set is partitioned into k subsamples. A single subsample is
etained as the test data set, and the remaining k − 1 subsamples
re used for training. Subsampling and bootstrapping are not well
uited for time series data (since splitting such data makes little
ense). Instead, the effect of measurement noise on the inferred
odel might be assessed by repeated network inference on ran-

omly perturbed data (D’haeseleer et al., 2000; Guthke et al., 2005).
hereby, the noise added to the measured data should be of the
rder of magnitude of the measurement noise or biological vari-
bility (Moeller and Radke, 2006).

.3. External Validation: Knowledge- and Experiment-based
alidation

The internal model validation may be insufficient because the
resumptions that underlie the chosen modelling architecture (Sec-
ion 3) and modelled components (Section 4) may oversimplify the
rue complexity in GRNs. In addition, the available data is mostly
nadequate with respect to the data requirements for large-scale

odels (Section 2.3). Often, the inference result is not unique,
.e. some model elements cannot be identified. Therefore, model
redictions should be checked by data, information and obser-
ations that where not used for modelling. Subjects for external
alidation are knowledge available from literature or databases,
nd data from experiments possibly initiated in response to the
odelling. By using such additional information, an assessment of

he network reconstruction is possible by the scores explained in
ection 7.1. Exemplarily, in the work of van Someren et al. (2006)
nowledge-based validation employing text mining information
as used to assess and compare diverse network inference meth-
ds. Recently, the elegant concept to integrate half of available

rior knowledge into the network inference and subsequently val-

date the model on the remaining knowledge was addressed by
ong-A-Poi (2008). However, knowledge-based model validation
s unsuited to validate novel insights of the GRN model. To set
n example, Perkins et al. (2006) compared the behaviour of five
s 96 (2009) 86–103

models inferred from data and two models found in the literature
describing early Drosophila melanogaster development. Interest-
ingly, some inferred relationships were found to be inconsistent
with standard textbook models, thus experimental validation is
inevitable.

7.4. Assessment of The Network Inference Methods

The assessment of GRN inference algorithms requires bench-
mark data sets for which the underlying network is known.
However, experimental (gold standard) data sets with the corre-
sponding ‘complete’ knowledge of the network structure are hardly
available, even if there is ongoing work. Hence, there is a need to
generate synthetic data that allow for thorough testing of learn-
ing algorithms in a reproducible manner. The inherent weakness
of such approach is that the performance of an inference strategy
would strongly rely on the model used to construct the artificial
data. Zak et al. (2001), Mendes et al. (2003) and others proposed
models and tools for generation of synthetic data that include rates
of transcription and mRNA degradation. Using synthetic data from
models introduced by Zak et al. (2001) in a slightly modified form
and by analyzing ROC-curves, Husmeier (2003) demonstrated how
the performance of network inference by employing DBNs depends
on the reliability of prior assumptions, the size of the training set
and the number of sampling points. Synthetic gene expression data
from in silico ‘experiments’ simulated by models similar to the
model from Mendes et al. (2003) were used by Yeung et al. (2002) to
introduce a novel algorithm that combines SVD with robust regres-
sion. They concluded from their analyses that the number of sample
points needed to recover a sparsely connected network scales log-
arithmically with the size of the network. Synthetic data were also
applied by Geier et al. (2007) to compare the performance of DBNs
and linear regression with variable selection based on F-statistics.
They used synthetic data simulated by a non-linear model accord-
ing to Mendes et al. (2003) representing 10 TFs and 20 other genes to
study specific perturbations of the GRN in the form of TF knock-outs
and the use of prior knowledge.

Faith et al. (2007) applied the CLR algorithm (see Section 3.1) and
compared its performance with other popular inference strategies
(ARACNE, RELNET, linear regression networks) on a compendium
of 445 DNA microarray experiments for E. coli. When evaluated
against known regulatory interactions from RegulonDB, both CLR
and RELevance NETworks reach high precisions, but CLR attains
almost twice the sensitivity of RELNET at some levels of precision.
The algorithms NIR, MNI and TSNI (see Section 3.3.1) were bench-
marked by Bansal et al. (2006) on a synthetic data set. They showed
that the reverse engineering tools MNI and TSNI are not well suited
for inferring large-scale networks, but rather for identification of
the targets of a perturbation. In a later work Bansal et al. (2007)
evaluated public software tools (ARACNE, BANJO and NIR—see Sec-
tion 3) using both synthetic and experimental microarray data with
the following conclusions: ARACNE performed well for steady-state
data, but was not suited for the analysis of short time-series data.
NIR worked very well for steady-state data, but required knowledge
on the genes that have been perturbed directly. BANJO required a
large number of data points, but when this condition was met, it
performed comparably to the other methods.

Noteworthy, the Dialogue on Reverse Engineering Assessment
Methods (DREAM) is fostering a concerted effort by computa-
tional and experimental biologists to understand the limitations
and strengths of techniques for inferring networks from high-

throughput data through network inference challenges. Thereby,
they aim to create what seems to be a suitable set of gold stan-
dards for network inference assessment by providing curated data
sets to the community and defining common evaluation metrics
(Stolovitzky et al., 2007). A recent example of the DREAM initiative
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Table 2
Overview of selected GRN inference approaches found in the literature. Shown are the type and amount of the gene expression data used in each work as well as the methods used to extract the relevant features from this data.
The column ‘#Nodes’ lists the number of nodes (genes or clusters) actually considered in the respective network model. Details on the applied inference techniques are given in the next column. The column ‘Data integration’
indicates whether or not additional data was used to support the inference process. The column ‘Constraints’ shows which of the general modelling constraints were used: SP—sparseness (i.e. the network structure is constrained
to be sparse); RL—indicates whether or not the number of regulators is limited, e.g. to previously known TFs (which implies sparseness); and CS—indicates whether or not expression is thought to change smoothly over time (i.e.
additional time points were estimated by interpolation to ‘increase’ the amount of data). The column furthest right shows methods that were applied to validate the inference results. Further abbreviations used in this table:
#Genes—number of genes measured; #Observ.—number of observations; Oligon.—oligonucleotide; ma.—microarray; tp.—time points; exp.—experiments; expr.—expression; stat.—statistical.

Reference Gene expression data Feature selection Inference
technique

Validation method

Author (year) Type Organism #Genes #Observ. Filtering Clustering #Nodes Model scheme Learning algorithm Data integration Constr.

SP RL CS

D’haeseleer et al.
(1999)

RTQ-PCR Rat 65 Time-series
(28 tp.)

– – 65 Linear difference
equations

Least squares –
√

–

Chen et al. (2001) Oligon. ma. Yeast 6,601 Time-series
(17 tp.)

Excluding low expr. Hierarchical
clustering

308 Information-
theoretical

Stepwise
(simulated
annealing)

–
√ √

–

Hartemink et al.
(2002)

Oligon. ma. Yeast 6,135 Static (320
exp.)

Knowledge-driven – 32 Bayesian network Stepwise
(simulated
annealing)

TF–DNA binding
data

√
–

Imoto et al. (2003) cDNA ma. Yeast 6,000 Static (100
exp.)

Knowledge-driven – 36 Bayesian network Stepwise (hill
climbing)

Databases,
literature

√
–

Tamada et al.
(2003)

cDNA ma. Yeast 5,871 Static (100
exp.)

Knowledge-driven – 124 Bayesian network Maximum
likelihood
re-estimations

DNA sequence
(motif search)

√
–

Nariai et al. (2004) cDNA ma. Yeast 6,178 Time-series
(69 tp.)

Knowledge-driven – 99 Bayesian network Stepwise (hill
climbing)

Protein–protein
interaction data

√
External (KEGG
database)

Basso et al. (2005) Oligon. ma. Human ∼10,000 Static (336
exp.)

– – ∼10,000 Information-
theoretical

Brute force –
√

Experimental

Bernard and
Hartemink (2005)

cDNA ma. Yeast 6,178 Time-series
(69 tp.)

Knowledge-driven – 25 Dynamic Bayesian
network

Stepwise
(simulated
annealing)

TF–DNA binding
data

√
–

Guthke et al.
(2005)

cDNA ma. Human 7,619 Time-series
(5 tp.)

Fold-criterion Fuzzy c-means
clustering

6 Linear differential
equations

Stepwise –
√

Data-based
(repeated
perturbation)

Kimura et al.
(2005)

cDNA ma. T. thermophilus 612 Time-series
(14 tp.)

– Hierarchical
clustering

25 S-system model Evolutionary
algorithm

–
√

–

Bonneau et al.
(2006)

Oligon. ma. Halobacterium ∼2,400 Mixed (268
exp.)

Excluding low expr. Biclustering 531 Generalized linear
difference
equations

Bivariate selection
prior LASSO

–
√ √

Data-based
(cross-validation);
Experimental

van Someren et al.
(2006)

cDNA ma. Mouse 9,596 Time-series
(5 tp.)

Fold-criterion – 101 Linear difference
equations

LASSO –
√ √

External
(literature)

Faith et al. (2007) Oligon. ma. E. coli 4,345 Mixed (445
exp.)

– – 4,345 Information-
theoretical

Brute force –
√ √

Experimental

Martin et al. (2007) Oligon. ma. Mouse ∼34,000 Time-series
(12 tp.)

Excluding low
expr.; stat.
significance

k-Means clustering 12 Boolean network Brute force –
√

–

Koczan et al. (2008) RTQ-PCR Human 20 Time-series
(19 × 3 tp.)

– – 20 Linear difference
equations

LASSO Databases,
literature

√ √
–
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s the five-gene network challenge. In this challenge, they provide
xpression data obtained from a synthetic 5-gene network in yeast,
.e. a network by human design that was transfected into an in vivo

odel organism. This allows the inference of a GRN for which the
rue network structure is known.

. Conclusions

Discovering structures and dynamics of GRNs based on large-
cale data represents a major challenge in systems biology. There
s a vast variety of data and network types, inference methods as

ell as evaluation metrics for network inference. Even if the differ-
nt model architectures rely on completely different mathematical
ormalisms, all models can be interpreted as networks of inter-
cting nodes. Nodes represent molecular entities such as genes
nd proteins, or functional modules, whereas edges correspond to
egulatory interactions and other relations between those nodes.
ue to limitations in the amount and quality of available data and

he corresponding computational efforts, network inference meth-
ds require simplifications such as linearization, discretization or
ggregation of compounds to modules. The usefulness of a GRN
nference method mainly depends on both the intended application
f identified networks and the data at hand.

Table 2 provides an overview of the characteristics of differ-
nt reverse engineering studies, covering the used data, feature
election methods, inference techniques, constraints and validation
ethods.

.1. The Purpose

Mathematical models can be used in two different ways (see also
ardner and Faith, 2005): first, the use of ‘mechanistic’ network
odels aims to identify true molecular interactions. These include

rotein–DNA interactions, in particular the interactions of TFs with
inding sites of their target genes, as well as protein–protein and
rotein–ligand interactions forming signalling pathways. Due to the
ast amount of molecules in cells, it is necessary to mention that
uch reverse engineering approaches do not claim to recover the
otality of connections in a biological network but rather reveal
nteractions that are highly significant under defined (experimen-
al) conditions.

Second, so-called ‘influence’ network models generally reflect
lobal properties of a system’s behaviour. Influence networks relate
he expression of one gene or a group of genes (module) to
he expression of another gene or module. Using the influence
pproach, true molecular interactions are described rather implic-
tly. Therefore, influence models can be difficult to interpret and
lso difficult to integrate or extend using further information. Solely
nalysing gene expression data allows to infer influence networks of
ene-to-gene interactions. Though, the integration of prior knowl-
dge as well as the use of additional experimental data can lead to
etwork models whose edges might be interpreted more mecha-
istically in terms of molecular interactions.

.2. The Data

Data obtained from DNA microarray monitoring of gene expres-
ion are the most common type of data used to reverse engineer
RNs. Other less mature high-throughput techniques are emerg-

ng and improving at a rapid pace. However, with respect to data
uality and quantity, no single measurement technique is capable

f providing all necessary data for an error-free network inference.
eeper biological insight will be gained combining different types
f information including measurements of transcript levels, pro-
eins and small molecules, as well as interactome measurements.
onsidering network edges that are supported by more than one of
s 96 (2009) 86–103

these data sets will further increase the chance to actually identify
biologically relevant interrelations.

The identifiability of model structure and parameters depends
on the chosen model architecture and the modelled features (see
Section 4) as well as on the experimental design (e.g. the kind of
intervention; see Sections 2.2 and 2.3). Perturbation experiments
by environmental changes such as heat shock or starvation alter
the behaviour of the system in a non-specific way, often initiat-
ing extensive changes in the cellular behaviour. Experiments that
apply specific techniques of intervention, such as gene knock-out or
RNA interference, are able to generate highly informative data for
network inference. This has been impressively demonstrated for
simple microorganisms, e.g. Halobacterium (Bonneau et al., 2006),
E. coli (Faith et al., 2007) and S. cerevisiae (Lee et al., 2002).

The quantity and quality of data available today is in general
insufficient to infer mechanistic networks on a genome-wide scale.
Only a small portion of the actually existing interactions can be
identified by current approaches. The higher the number of inter-
acting compounds (genes, proteins, etc.) the higher the complexity
of a corresponding network model and thus, a larger number of
both state variables and model parameters is required.

8.3. The Integration of Diverse Biological Information

The dimensionality (data insufficiency) problem strongly
impedes the modelling of GRNs. Hence, in order to obtain reliable
inference results, it is important to carry out feature selection, to
incorporate biologically motivated constraints (such as sparseness)
and to combine diverse types of data (e.g. gene expression data and
sequence information). While network sparseness is commonly
postulated during inference and implemented by limiting the
number of regulators per gene or in general penalising model
complexity, the properties of scale-freeness and modular design of
regulatory networks have just been recognised as additional mod-
elling constraints. As shown, various data and information from
scientific literature and biological databases can be used in combi-
nation with gene expression levels, e.g. genome sequence data (TF
binding motifs), gene functional annotations, text-mining infor-
mation, ChIP-on-chip data and protein–protein interaction data.
We reviewed promising studies that integrate such diverse types of
data during the reconstruction of (dynamic) GRN models. The incor-
poration of heterogeneous data and prior biological knowledge
has been presented in particular for Bayesian networks and linear
difference equation models. Facing limited amounts of experimen-
tal data, such a combined analyses of different types of biological
information supports the inference process and thus allows to
infer more exact and more interpretable models. The integration
of multiple sources of heterogeneous data and prior biological
knowledge will be one of the major focuses in future GRN research.

8.4. The Assessment of Network Inference Methods

Current efforts aim to understand individual strengths and
weaknesses of various GRN inference methods by applying them
to equal data sets. Such comparisons require an appropriate eval-
uation scheme to assess the success and correctness of network
reconstruction. Generally, researchers apply so-called ‘synthetic
networks’. Here, designed networks are thought to produce artifi-
cial data approximating real gene expression values. Data produced
by synthetic networks may be used to address questions like: Which
experiments and data types are best suited for a specific net-

work inference method? For individual methods, which algorithm
configuration works best? Obviously, models used to generate syn-
thetic data cannot reflect the complexity of a real biological system.
However, standards are still missing to evaluate different inference
methods using real biological data.
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Systems biological models are intended to assist biologists in
enerating assumptions for further research activities. Hypotheses
enerated by modelling can and should be experimentally tested.
aith et al. (2007), for instance, tested and confirmed predicted
nteractions using ChIP. The predictive power of a GRN model
nferred by Bonneau et al. (2006) was successfully verified using
NA microarray data which were not included in the data set used

or network inference. The validation and interpretation of GRN
odels ideally goes in line with new knowledge and experimental

ata available for modelling, and thus a reiterative cycle between
odel construction and experimental validation can be formed. It

s exciting to see, how the modelling of GRNs can be improved by
dvances in biotechnology and bioinformatics in the future.
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