
CompSci 4 24.1Searching & Sorting

Searching

&

Sorting

CompSci 4 24.2Searching & Sorting

The Plan

ÿ Searching
ÿ Sorting
ÿ Java Context

CompSci 4 24.3Searching & Sorting

Search (Retrieval)

ÿ “Looking it up”
ÿ One of most fundamental operations
ÿ Without computer

þ Indexes
þ Tables of content
þ Card Catalogue
þ Reference books

ÿ Fundamental part of many computer algorithms

CompSci 4 24.4Searching & Sorting

Linear (Sequential) Search

ÿ Plod through material, one item at a time
ÿ Always works
ÿ Can be slow
ÿ Sometimes the only way
ÿ Phone Book Example

þ 660-6567
þ Whose number is it?

ÿ (How could this be done faster?)

CompSci 4 24.5Searching & Sorting

Binary Search

Often can do better than linear search:
ÿ Phone Book again (Predates Computer!)

þ Find midpoint
þ Decide before or after (or direct hit)
þ Discard half of uncertainty
þ Repeat until there

ÿ Fast! (Don’t even need computer!)
ÿ What does it require (why not use all the time)?
ÿ How man extra steps if double sized book?

CompSci 4 24.6Searching & Sorting

Hashing

A way of storing info so we can go directly there
to retrieve
ÿ Mail boxes in a mail room (know exactly where

number 33 is.)
ÿ Hashing is a way of transforming some part of info

to allow such straight-forward storage
ÿ What to use for students in classroom

þ Age? Last name? SSN?

CompSci 4 24.7Searching & Sorting

Hashing

ÿ Use extra space to allow for faster operation
ÿ Collision Handling

þ What to do if two different items map to the same bin?
þ Many different solutions…

CompSci 4 24.8Searching & Sorting

Search Performance

ÿ Linear Search (brute force, plodding)
þ Proportional to amount ~N

ÿ Binary Search (telephone book)
þ Proportional to log of amount ~log(N)

ÿ Hashing (go directly to …)

þ Independent of amount! ~constant

CompSci 4 24.9Searching & Sorting

Sorting (Motivation)

Fundamental part of many algorithms and procedures
ÿ Required before other operations possible

þ E.g., binary search

ÿ Often a user requirement for manual use
þ E.g., phone book, dictionary, directory, index…

ÿ Get lower Postal Rates if sorted by Zip Code
ÿ Implicit requirement for “orderly” operation

CompSci 4 24.10Searching & Sorting

Selection Sort
þ N items in an array named Data

[2 | 4 | 7 | 3 | 1 | 8 | 5]
þ Find smallest of elements 0 thru N-1 of Data
þ Interchange this with 1st element of array Data

[_ | _ | _ | _ | _ | _ | _]
þ Find smallest of elements 1 thru N-1 of Data
þ Interchange this with 2nd element of array Data

[_ | _ | _ | _ | _ | _ | _]
þ ...
þ Find smallest of elements k-1 thru N-1 of Data
þ Interchange this with kth element of array Data

[_ | _ | _ | _ | _ | _ | _]
[_ | _ | _ | _ | _ | _ | _]
[_ | _ | _ | _ | _ | _ | _]

þ Done when k-1 = N-1
[_ | _ | _ | _ | _ | _ | _]

CompSci 4 24.11Searching & Sorting

Selection Sort
þ N items in an array named Data

[2 | 4 | 7 | 3 | 1 | 8 | 5]
þ Find smallest of elements 0 thru N-1 of Data
þ Interchange this with 1st element of array Data

[1 | 4 | 7 | 3 | 2 | 8 | 5]
þ Find smallest of elements 1 thru N-1 of Data
þ Interchange this with 2nd element of array Data

[1 | 2 | 7 | 3 | 4 | 8 | 5]
þ ...
þ Find smallest of elements k-1 thru N-1 of Data
þ Interchange this with kth element of array Data

[1 | 2 | 3 | 7 | 4 | 8 | 5]
[1 | 2 | 3 | 4 | 7 | 8 | 5]
[1 | 2 | 3 | 4 | 5 | 8 | 7]

þ Done when k-1 = N-1
[1 | 2 | 3 | 4 | 5 | 7 | 8]

CompSci 4 24.12Searching & Sorting

Selection Sort Performance (N 2)

ÿ Assume there are N items to be sorted
ÿ Notice that with each pass we have to make N

comparisons
þ (actually N/2 on average)

ÿ Notice that we have to make N passes
þ (actually N-1)

ÿ Therefore require

s N x N comparisons

þ (actually N*(N-1)/2)

ÿ Performance proportional to N2 or ~N2

CompSci 4 24.13Searching & Sorting

Other Simple Sorts (N 2)

ÿ 2 More simple sorts like Selection Sort
þ Insertion Sort
þ Bubble Sort

ÿ All 3 have common properties
þ Easy to write
þ Fairly slow for large amounts of data

CompSci 4 24.14Searching & Sorting

Industrial Quality Sorts

ÿ Can do much better than simple sorts
ÿ Selection Sort is often used

þ Divide and conquer strategy
þ Partitions data into two parts
þ Partitions each of these parts into subparts
þ Etc.

ÿ Performance greatly improved over previous
þ Can handle any real job

CompSci 4 24.15Searching & Sorting

Other Fast Sorts

ÿ Merge Sort
þ Stable
þ Requires extra memory

ÿ Binary Tree Sort
ÿ Heap Sort
ÿ Shell Sort
ÿ Bucket Sort

þ Can be extremely fast under special circumstances
þ (Analogy to Hashing)

CompSci 4 24.16Searching & Sorting

Sort Performance

ÿ Slowest: ~N2

þ Selection Sort
þ Insertion Sort , Bubble Sort

ÿ Very Fast: ~N log N
þ QuickSort, Binary Tree Sort
þ Merge Sort, Heap Sort

ÿ Quite Fast
þ Shell Sort

ÿ Fastest (limited situations): ~N
þ Bucket Sort

CompSci 4 24.17Searching & Sorting

Java Context (writing your own?)

Don’t need to write your own -- Java includes:
ÿ For Collections

static void sort(List list)

þ stable

static int binarySearch(List list, Object key)

ÿ For Arrays (?? = int, double, …, and Object)
static void sort(?? [] a)

þ Uses quicksort (not stable)

static int binarySearch(?? [] a, ?? key)

CompSci 4 24.18Searching & Sorting

Practice

1. In a class you design, create an array of ints,
initialise with some numeric data and print it
out.

2. Utilize the sort method found in the Arrays class.
Sort your array and print it out again.

3. Write your own version of selection sort and add
it to your class. Compare to the sort of the Arrays
class.

