
CompSci 4 28.1Recursion & Minimax

Playing Against the Computer
Recursion & the Minimax Algorithm

Key to Acing Computer Science

If you understand everything, ace your computer science
course.

Otherwise, study & program
something you don't understand,

then see
Key to Acing Computer Science

CompSci 4 28.2Recursion & Minimax

Winning Tic-tac-toe

Anticipate the implications of your move.

Avoid moves which could
enable your opponent to win.

Attempt moves which would
force your opponent to lose, so you win.

CompSci 4 28.3Recursion & Minimax

How to pass the buck: recursion!

Imagine this:
You have all sorts of friends who are willing to help you do

your work with two caveats:
o They won't do all of your work
o They will only do the type of work you have to do

Example:
How would you do your homework consisting of 100 calculus

problems?
Easy – do the first problem yourself and ask your friend to do

the rest

CompSci 4 28.4Recursion & Minimax

How could this approach work?

What actually happens is that your friends doing most of
your work have friends of their own. Everyone
eventually does a small part of the work and piece it
back together to do the work in its entirity.

In the last example, 100 total people would be working
on the homework, each person doing only one problem
each and passing on the rest.

Important: the person to do the last homework problem
does it entirely without help.

CompSci 4 28.5Recursion & Minimax

The Parts of Recursion

ÿ Base Case – this is the simplest form of the problem
which can be solved directly. In the example earlier
this would be doing 1 homework problem.

ÿ Recursive Step – this is when a smaller identical
problem is solved as part of solving the larger
problem. In the earlier example, this would be
passing along all but one of the homework to a friend.

CompSci 4 28.6Recursion & Minimax

Example: Finding the Maximum

ÿ Imagine you are given a stack of 1000 unsorted papers
with grades on them and told to find the maximum
grade.

ÿ You can only get help from friends in finding the
maximum and in less than the 1000 papers you were
given.

ÿ What do you ask your friend to do to help you find
the maximum in the least effort on your part?

CompSci 4 28.7Recursion & Minimax

Example: Sorting

ÿ Now imagine you must sort those 1000 papers by
grade. Define a recursive algorithm to solve this
problem. To do this define two parts:
þ What is the simplest number of papers to sort, and how

would you sort them?
þ How would you divide the task in to smaller sorting tasks

and integrate theses solutions to sort the entire set of N
papers?

CompSci 4 28.8Recursion & Minimax

The Problem

Your Moves

My Moves

My Moves

Your Moves
Your Moves

My Moves My Moves
My Moves

. Your Moves

CompSci 4 28.9Recursion & Minimax

Example: the Minimax Algorithm

ÿ In many games, one players loss is another player's
gain.

ÿ A winning strategy for this type of game is to
minimize the maximum potential gain of your
opponent and assume your opponent is following the
same strategy.

ÿ Better than brute force lookahead:
þ Consider all possible moves to the bitter end
þ Pick the move that leads to a win, if possible
þ Why not program Computer Chess that way?

CompSci 4 28.10Recursion & Minimax

Example: the Minimax Algorithm

ÿ Since your opponent is following the same strategy,
and game moves eventually end the game, this
algorithm can be implemented recursively.

Anticipate the implications of your move.

Avoid moves which could
enable your opponent to win.

Attempt moves which would
force your opponent to lose, so you win.

CompSci 4 28.11Recursion & Minimax

A Winning Computer Player for
Tic-tac-toe
ÿ What is the algorithm? Assume the input is a board

and whose turn it is (X or O):
evaluate(board, position)
þ What is the base case? What is the simplest board to

evaluate win, loss, or cat outcome? Remember you assume
both players are doing everything possible to win.

þ What is the recursive step?

CompSci 4 28.12Recursion & Minimax

How can we adapt this to Chess?

ÿ Can’t go to the bitter end: Takes too long: “Eons”
ÿ How can we see which move is better?

þ Need something like a Board Evaluation Function
þ What does it use to evaluate board?

o Material: who has more of what kind of pieces
o Position ?
o Anything else?

þ Can then use limited look-ahead to suggest who comes out
ahead

o Will not be perfect
o How do you avoid traps (sacrifices)?

ÿ Use Minimax based on Board Evaluation Functions

