
CompSci 4 5.1

Graphics



CompSci 4 5.2

The Plan

ÿ Hardware
ÿ Coordinate System
ÿ Built-in Shapes
ÿ User-defined Shapes
ÿ Sprites and Shapes
ÿ Making a Sprite



CompSci 4 5.3

Hardware

ÿ Monitor
� Resolutions (640x480, 800x600, 1280x1024)
� Bit depth (8, 15, 16, 24, 32)
� Refresh rate (75-85 Hz)

ÿ Video Card
� Assists monitor
� Optimizes graphics



CompSci 4 5.4

Coordinate Systems

ÿ Cartesian
ÿ Polar
ÿ Screen (Graphics)
ÿ Java 2D (Graphics2D)



CompSci 4 5.5

Coordinate Systems

ÿ Cartesian
� Rectangular
� X increases to the right
� Y increases as you go up
� Origin typically at center
� Real valued y

x0



CompSci 4 5.6

Coordinate Systems

ÿ Polar
� r increases as distance from the origin increases
� theta increases in the counterclockwise direction
� grid lines make concentric circles and sectors
� Origin typically at center
� r is real valued
� theta is from 0 to 2*PI r

theta0

.



CompSci 4 5.7

Coordinate Systems

ÿ Conversion between Cartesian and Polar
� [x, y] = [r*cos(theta), r*sin(theta)]
� r = sqrt(x*x+y*y)
� theta = acos(x/r) if y>0
� theta = - acos(x/r) if y<=0
� No need to memorize this, but you may see it in the code



CompSci 4 5.8

Coordinate Systems

ÿ Screen (Graphics)
� Rectangular
� X increases to the right
� Y increases as you go down
� Origin at upper left
� Non-negative integer valued x

y

0



CompSci 4 5.9

Coordinate Systems

ÿ Java 2D (Graphics2D)
� Rectangular
� X increases to the right
� Y increases as you go down
� Origin at upper left
� Real valued (approximated) x

y

0



CompSci 4 5.10

Coordinate Systems

ÿ Java2D to Screen conversion
� Simple – round the floating point to an integer (or just 

truncate)

ÿ Screen to Java2D conversion
� None needed because integers are approximated by reals



CompSci 4 5.11

Coordinate Systems

Why use Java2D coordinate system?
ÿ Smoother motion
ÿ Integer values often need to be rounded which can 

lead to more calculation error
ÿ Simpler to rotate and expand



CompSci 4 5.12

Built-in Shapes

In java.awt.geom package
ÿ Ellipse2D.Double
ÿ Rectangle2D.Double
ÿ RoundRectangle2D.Double
ÿ All constructed with (x, y, width, height)
ÿ What about circles and squares?



CompSci 4 5.13

User-defined Shapes

Also in java.awt.geom
ÿ GeneralPath

� Lines
� Curves

o Quadratic
o Cubic

� Can be transformed via AffineTransform

ÿ Area
� Constructive Area Geometry
� Useful tool for finding intersections



CompSci 4 5.14

Shapes

All classes so far are all Shapes
ÿ Can draw them using a Graphics2D
ÿ Can get boundary information
ÿ Can be used to make a Sprite…



CompSci 4 5.15

Sprites and Shapes

Sprites have
ÿ Size
ÿ Shape
ÿ Orientation
ÿ Location
ÿ Color
ÿ Optionally a Tracker



CompSci 4 5.16

Making a Sprite

How to make a Sprite:
1. Extend Sprite
2. In the constructor

a. Call super()
b. Make any Shape
c. Call setShape(yourShape)



CompSci 4 5.17

Making a Sprite

package tipgame.game.test.sprite;

import java.awt.geom.*;

public class SquareSprite

extends Sprite

{

public SquareSprite()

{

super();

Rectangle2D.Double rectangle;

rectangle=new Rectangle2D.Double(0, 0, 1, 1);

setShape(rectangle);

}

}

How to make a Sprite:

1. Extend Sprite

2. In the constructor

a. Call super()

b. Make any Shape

c. Call
setShape(yourShape)



CompSci 4 5.18

Making a Sprite

See the video game engine web site for the 
source code examples that follow

http://www.cs.duke.edu/~cjj1/professional/tipgame/



CompSci 4 5.19

Making a Sprite

In the constructor of LightSprite:
super();
Area area=new Area();
Rectangle2D.Double box=new Rectangle2D.Double(0, 0, 0.2, 0.6);
area.add(new Area(box));
Ellipse2D.Double circle=new Ellipse2D.Double(0.02, 0.02, 0.16, 0.16);
area.subtract(new Area(circle));
circle=new Ellipse2D.Double(0.02, 0.22, 0.16, 0.16);
area.subtract(new Area(circle));
circle=new Ellipse2D.Double(0.02, 0.42, 0.16, 0.16);
area.subtract(new Area(circle));
setShape(area);

ÿ What does this look like?



CompSci 4 5.20

Making a Sprite

In the constructor of TriangleSprite:

super();
GeneralPath path=new GeneralPath();
path.moveTo(0.0f, 0.0f);
path.lineTo(1.0f, (float)Math.sqrt(3));
path.lineTo(-1.0f, (float)Math.sqrt(3));
path.closePath();
setShape(path);

ÿ How could you make a space ship shape?


