Genome Revolution: COMPSCI 006G 141

From practice to theory and back again

In theory there is no difference between theory and practice, but
not in practice

e How do we search an array or an ArrayList for a value?
» I'm thinking of a number from 1 to 100
* What if I tell you: low, high, correct?
* What if I tell you: yes or no?
e Two kinds of array search
> Binary search, like dictionary lookup, requires sorted list

> Sequential search, old-fashioned phone book search for
number

e Which algorithm is better?
> Slower ones are often “good enough” simple to implement
> Some fast algorithms are better than others

Genome Revolution: COMPSCI 006G 142

Tools for algorithms and programs

o We can time different methods, but how to compare timings?
» Different on different machines, what about “workload”?
> Mathematical tools can help analyze/discuss algorithms

o We often want to sort by different criteria
> Sort CDs by artist, title, genre, length, ...
> Sort directories/files by size, alphabetically, or by date
> Object-oriented concepts can help in implementing sorts

o We often want to sort different kinds of arrays: String and int
> Don’t want to duplicate the code, that leads to errors

> Generic programming helps, new in Java 5, now Objects

Genome Revolution: COMPSCI 006G 143

To code or not to code, that is the ...

e Should you call an existing sorting routine or write your own?
» If you can, don’t rewrite code written and accessible
> Sometimes you don’t know what to call
> Sometimes you can’t call the existing library routine

e In Java there are standard sort functions that can be used with
built-in arrays and with ArrayLists

» Accessible via java.util.Arrays/Collectoins
» These are robust and fast and code is readable

e Also code for searching and min/max finding
> Divided between Arrays and Collections

Genome Revolution: COMPSCI 006G 144

From practical to theoretical

o We want a notation for discussing differences between
algorithms, avoid empirical details at first

» Empirical studies needed in addition to theoretical studies
> As we'll see, theory hides some details, but still works

e Binary search : roughly 10 entries in a 1,000 element vector
> What is exact relationship? How to capture “roughly”?
» Compared to sequential/linear search?

e We use O-notation, big-Oh, to capture properties but avoid
details

> N2 is the same as 13N? is the same as 13N? + 23N
> O(N2), in the limit everything is the same

Genome Revolution: COMPSCI 006G 145

Running times @ 106 instructions/sec

N O(log N) O(N) O(N log N) O(N?»)

10| 0.000003 | 0.00001 0.000033 |0.0001

100|0.000007 | 0.00010 0.000664 |0.1000

1,000 0.000010 | 0.00100 0.010000 |1.0

10,000 | 0.000013 | 0.01000 0.132900 |[1.7 min

100,000 | 0.000017 | 0.10000 1.661000 |2.78 hr

1,000,000 | 0.000020 | 1.0 19.9 11.6 day

1,000,000,000 | 0.000030 {16.7 min |18.3 hr 318
centuries

Genome Revolution: COMPSCI 006G

What does table show? Hide?

e Can we sort a million element array with selection sort?
> How can we do this, what’s missing in the table?
> What are hidden constants, low-order terms?

o Can we sort a billion-element array? Are there other sorts?
> We'll see quicksort, an efficient (most of the time) method
» O(N log N), what does this mean?

e Sorting code for different algorithms java.util

» Collections and Object arrays use same algorithm/code
> Primitive types: int, double, ... use different algorithm

Genome Revolution: COMPSCI 006G 147

Who is Alan Perlis?

e Itis easier to write an incorrect
program than to understand a
correct one

e Simplicity does not precede
complexity, but follows it

e If you have a procedure with
ten parameters you probably
missed some

o If alistener nods his head
when you're explaining your
program, wake him up

e Programming is an unnatural
act

o Won first Turing award

http://www.cs.yale.edu/homes/perlis-alan/quotes.html

Genome Revolution: COMPSCI 006G

Selection sort: summary

e Simple to code n? sort: n? comparisons, n swaps

void selectSort(String[] a)

{
for (int k=0; k < a.length; k++){
int minIndex = findMin(a, k) ;
swap (a, k,minIndex) ;
}
}

n

e # comparisons: 2 k=1+2+. +n=n(n+l)/2 = 0(n?)

> Swaps?

. Sorted, won’t move
> Invariant: ; e 229727
final position

Genome Revolution: COMPSCI 006G 149

From smarter code to algorithm

o We've seen selection sort, other O (N?) sorts include

> Insertion sort: better on nearly sorted data, fewer
comparisons, potentially more data movements (selection)

> Bubble sort: dog, dog, dog, don’t use it

e Efficient sorts are trickier to code, but not too complicated
> Often recursive as we'll see, use divide and conquer
> Quicksort and Mergesort are two standard examples

e Mergesort divide and conquer
» Divide vector in two, sort both halfs, merge together

> Merging is easier because sub-arrays sorted, why?

Genome Revolution: COMPSCI 006G 14.10

Quicksort, an efficient sorting algorithm

e Step one, partition the vector, moving smaller elements left,
larger elements right

> Formally: choose a pivot element, all elements less than
pivot moved to the left (of pivot), greater moved right

> After partition/pivot, sort left half and sort right half

original partition on 14 partition on 10
14 12 15 1 12 6 10 3 14 15 10 12 14 15 17
Genome Revolution: COMPSCI 006G 1411

Quicksort details

void quick(String[] a,int first,int last)
// pre: first <= last
// piv: a[first] <= ... <= a[list]
{
int piv;
if (first < last)
{
piv = pivot(a,first,last);
quick(a,first,piv-1);
quick(a,piv+l,last);
}
}
// original call is Quick(a,0,a.length-1);
e How do we make progress towards base case? What's a good
pivot versus a bad pivot? What changes?

> What about the code for pivot?
> What about other types of arrays?

Genome Revolution: COMPSCI 006G 1412

What is complexity?

o We've used O-notation, (big-Oh) to describe algorithms
> Binary search is O(log n)
> Sequential search is O(n)
> Selection sort is O(n?)
> Quicksort is O(n log n)

o What do these measures tell us about “real” performance?
> When is selection sort better than quicksort?
> What are the advantages of sequential search?

o Describing the complexity of algorithms rather than
implementations is important and essential

> Empirical validation of theory is important too

Genome Revolution: COMPSCI 006G 1413

Do it fast, do it slow, can we do it at all?

e Some problems can be solved quickly using a computer
> Searching a sorted list
e Some problems can be solved, but it takes a long time
> Towers of Hanoi
e Some problems can be solved, we don’t know how quickly
» Traveling salesperson, optimal class scheduling
e Some problems can’t be solved at all using a computer
> The halting problem, first shown by Alan Turing

e The halting problem: can we write one program used to
determine if an arbitrary program (any program) stops?

> One program that reads other programs, must work for
every program being checked, computability

Genome Revolution: COMPSCI 006G 1414

What is computer science?

e What is a computation?
» Can formulate this precisely using mathematics
> Can say “anything a computer can compute”

> Study both theoretical and empirical formulations, build
machines as well as theoretical models

e How do we build machines and the software that runs them?
» Hardware: gates, circuits, chips, cache, memory, disk, ...
> Software: operating systems, applications, programs

® Art, Science, Engineering

> How do we get better at programming and dealing with
abstractions

> What is hard about programming?

Genome Revolution: COMPSCI 006G 1415

Shafi Goldwasser

e RCS professor of computer
science at MIT
» Co-inventor of zero-
knowledge proof protocols
How do you convince someone
that you know something
without revealing “something”
o Consider card readers for dorms
> Access without tracking

Work on what you like, what feels
right, I now of no other way to
end up doing creative work

Genome Revolution: COMPSCI 006G 1416

