
Genome Revolution: COMPSCI 006G 14.1

Genome Revolution: COMPSCI 006G 14.2

From practice to theory and back again
In theory there is no difference between theory and practice, but

not in practice
How do we search an array or an ArrayList for a value?

I'm thinking of a number from 1 to 100
• What if I tell you: low, high, correct?
• What if I tell you: yes or no?

Two kinds of array search
Binary search, like dictionary lookup, requires sorted list
Sequential search, old-fashioned phone book search for
number

Which algorithm is better?
Slower ones are often “good enough” simple to implement
Some fast algorithms are better than others

Genome Revolution: COMPSCI 006G 14.3

Tools for algorithms and programs
We can time different methods, but how to compare timings?

Different on different machines, what about “workload”?
Mathematical tools can help analyze/discuss algorithms

We often want to sort by different criteria
Sort CDs by artist, title, genre, length, …
Sort directories/files by size, alphabetically, or by date
Object-oriented concepts can help in implementing sorts

We often want to sort different kinds of arrays: String and int
Don’t want to duplicate the code, that leads to errors
Generic programming helps, new in Java 5, now Objects

Genome Revolution: COMPSCI 006G 14.4

To code or not to code, that is the …
Should you call an existing sorting routine or write your own?

If you can, don’t rewrite code written and accessible
Sometimes you don’t know what to call
Sometimes you can’t call the existing library routine

In Java there are standard sort functions that can be used with
built-in arrays and with ArrayLists

Accessible via java.util.Arrays/Collectoins
These are robust and fast and code is readable

Also code for searching and min/max finding
Divided between Arrays and Collections

Genome Revolution: COMPSCI 006G 14.5

From practical to theoretical
We want a notation for discussing differences between
algorithms, avoid empirical details at first

Empirical studies needed in addition to theoretical studies
As we’ll see, theory hides some details, but still works

Binary search : roughly 10 entries in a 1,000 element vector
What is exact relationship? How to capture “roughly”?
Compared to sequential/linear search?

We use O-notation, big-Oh, to capture properties but avoid
details

N2 is the same as 13N2 is the same as 13N2 + 23N
O(N2), in the limit everything is the same

Genome Revolution: COMPSCI 006G 14.6

Running times @ 106 instructions/sec

318
centuries

18.3 hr16.7 min0.0000301,000,000,000

11.6 day19.91.00.0000201,000,000

2.78 hr1.6610000.100000.000017100,000

1.7 min0.1329000.010000.00001310,000

1.00.0100000.001000.0000101,000

0.10000.0006640.000100.000007100

0.00010.0000330.000010.00000310

O(N2)O(N log N)O(N)O(log N)N

Genome Revolution: COMPSCI 006G 14.7

What does table show? Hide?
Can we sort a million element array with selection sort?

How can we do this, what’s missing in the table?
What are hidden constants, low-order terms?

Can we sort a billion-element array? Are there other sorts?
We’ll see quicksort, an efficient (most of the time) method
O(N log N), what does this mean?

Sorting code for different algorithms java.util
Collections and Object arrays use same algorithm/code
Primitive types: int, double, … use different algorithm

Genome Revolution: COMPSCI 006G 14.8

Who is Alan Perlis?
It is easier to write an incorrect
program than to understand a
correct one
Simplicity does not precede
complexity, but follows it
If you have a procedure with
ten parameters you probably
missed some
If a listener nods his head
when you're explaining your
program, wake him up
Programming is an unnatural
act
Won first Turing award

http://www.cs.yale.edu/homes/perlis-alan/quotes.html

Genome Revolution: COMPSCI 006G 14.9

Selection sort: summary
Simple to code n2 sort: n2 comparisons, n swaps

void selectSort(String[] a)
{

for(int k=0; k < a.length; k++){
int minIndex = findMin(a,k);
swap(a,k,minIndex);

}
}

comparisons:
Swaps?
Invariant:

Σk=1
n
k = 1 + 2 + … + n = n(n+1)/2 = O(n2)

Sorted, won’t move
final position ?????

Genome Revolution: COMPSCI 006G 14.10

From smarter code to algorithm
We’ve seen selection sort, other O(N2) sorts include

Insertion sort: better on nearly sorted data, fewer
comparisons, potentially more data movements (selection)
Bubble sort: dog, dog, dog, don’t use it

Efficient sorts are trickier to code, but not too complicated
Often recursive as we’ll see, use divide and conquer
Quicksort and Mergesort are two standard examples

Mergesort divide and conquer
Divide vector in two, sort both halfs, merge together
Merging is easier because sub-arrays sorted, why?

Genome Revolution: COMPSCI 006G 14.11

Quicksort, an efficient sorting algorithm
Step one, partition the vector, moving smaller elements left,
larger elements right

Formally: choose a pivot element, all elements less than
pivot moved to the left (of pivot), greater moved right
After partition/pivot, sort left half and sort right half

original partition on 14 partition on 10

15 6 31214 10 17 156 312 1410 17 1563 12 1410 17

Genome Revolution: COMPSCI 006G 14.12

Quicksort details
void quick(String[] a,int first,int last)
// pre: first <= last
// piv: a[first] <= ... <= a[list]
{

int piv;
if (first < last)
{

piv = pivot(a,first,last);
quick(a,first,piv-1);
quick(a,piv+1,last);

}
}
// original call is Quick(a,0,a.length-1);

How do we make progress towards base case? What’s a good
pivot versus a bad pivot? What changes?

What about the code for pivot?
What about other types of arrays?

Genome Revolution: COMPSCI 006G 14.13

What is complexity?
We’ve used O-notation, (big-Oh) to describe algorithms

Binary search is O(log n)
Sequential search is O(n)
Selection sort is O(n2)
Quicksort is O(n log n)

What do these measures tell us about “real” performance?
When is selection sort better than quicksort?
What are the advantages of sequential search?

Describing the complexity of algorithms rather than
implementations is important and essential

Empirical validation of theory is important too

Genome Revolution: COMPSCI 006G 14.14

Do it fast, do it slow, can we do it at all?
Some problems can be solved quickly using a computer

Searching a sorted list
Some problems can be solved, but it takes a long time

Towers of Hanoi
Some problems can be solved, we don’t know how quickly

Traveling salesperson, optimal class scheduling
Some problems can’t be solved at all using a computer

The halting problem, first shown by Alan Turing

The halting problem: can we write one program used to
determine if an arbitrary program (any program) stops?

One program that reads other programs, must work for
every program being checked, computability

Genome Revolution: COMPSCI 006G 14.15

What is computer science?
What is a computation?

Can formulate this precisely using mathematics
Can say “anything a computer can compute”
Study both theoretical and empirical formulations, build
machines as well as theoretical models

How do we build machines and the software that runs them?
Hardware: gates, circuits, chips, cache, memory, disk, …
Software: operating systems, applications, programs

Art, Science, Engineering
How do we get better at programming and dealing with
abstractions
What is hard about programming?

Genome Revolution: COMPSCI 006G 14.16

Shafi Goldwasser
RCS professor of computer
science at MIT

Co-inventor of zero-
knowledge proof protocols

How do you convince someone
that you know something
without revealing “something”
Consider card readers for dorms

Access without tracking

Work on what you like, what feels
right, I now of no other way to
end up doing creative work

