
Slides from Kevin Wayne on Union-
Find and Percolotion 



2 

Steps to developing a usable algorithm. 
• Model the problem. 
• Find an algorithm to solve it. 
• Fast enough? Fits in memory? 
• If not, figure out why. 
• Find a way to address the problem. 
• Iterate until satisfied. 

 
The scientific method. 
 
Mathematical analysis. 

Subtext of today’s lecture (and this course) 

Presenter
Presentation Notes
and computational complexity



3 

‣ dynamic connectivity 
‣ quick find 
‣ quick union 
‣ improvements 
‣ applications 



4 

Given a set of objects 
• Union:  connect two objects. 
• Connected:  is there a path connecting the two objects? 

Dynamic connectivity 

6 5 1 

4 

8 7 

3 2 

0 

union(3, 4) 

union(8, 0) 

union(2, 3) 

union(5, 6) 

connected(0, 2) no 

connected(2, 4) yes 

union(5, 1) 

union(7, 3) 

union(1, 6) 

connected(0, 2) yes 

connected(2, 4) yes 

union(4, 8) 

more difficult problem: find the path 



5 

Connectivity example 

p 

q 

Q. Is there a path from p to q? 

A. Yes. 

Presenter
Presentation Notes
medium.txt (625 sites, 900 edges, 3 connected components)



6 

Dynamic connectivity applications involve manipulating objects of all types. 
• Pixels in a digital photo. 
• Computers in a network. 
• Variable names in Fortran. 
• Friends in a social network. 
• Transistors in a computer chip. 
• Elements in a mathematical set. 
• Metallic sites in a composite system. 

 
When programming, convenient to name sites 0 to N-1. 
• Use integers as array index. 
• Suppress details not relevant to union-find. 

Modeling the objects 

can use symbol table to translate from site 

names to integers: stay tuned (Chapter 3) 

Presenter
Presentation Notes
Manhattan sewers, McCosh rooms



7 

We assume "is connected to" is an equivalence relation: 
• Reflexive:  p is connected to p. 
• Symmetric:  if p is connected to q, then q is connected to p. 
• Transitive: if p is connected to q and q is connected to r, 

then p is connected to r. 
 

Connected components.  Maximal set of objects that are mutually connected. 
 

Modeling the connections 

{ 0 } { 1 4 5 } { 2 3 6 7 } 

3 connected components 

0 1 2 3 

4 5 6 7 

Presenter
Presentation Notes
Simple model captures the essential nature of connectivity.
equivalence relation partitions objects into equivalence classes
sets = connected components = equivalence class



8 

Find query.  Check if two objects are in the same component. 
 
Union command.   Replace components containing two objects with their union. 

 
 

Implementing the operations 

union(2, 5) 

{ 0 } { 1 4 5 } { 2 3 6 7 } 

3 connected components 

0 1 2 3 

4 5 6 7 

{ 0 } { 1 2 3 4 5 6 7 } 

2 connected components 

0 1 2 3 

4 5 6 7 



9 

Goal.  Design efficient data structure for union-find. 
• Number of objects N can be huge.  
• Number of operations M can be huge. 
• Find queries and union commands may be intermixed. 

Union-find data type (API) 

 public class UF 

UF(int N) 
initialize union-find data structure with  

N objects (0 to N-1) 

void union(int p, int q) add connection between p and q 

boolean connected(int p, int q) are p and q in the same component? 

int find(int p) component identifier for p (0 to N-1) 

int count() number of components 



10 

• Read in number of objects N from standard input. 
• Repeat: 

- read in pair of integers from standard input 
- write out pair if they are not already connected 

Dynamic-connectivity client 

public static void main(String[] args) 
{ 
   int N = StdIn.readInt(); 
   UF uf = new UF(N); 
   while (!StdIn.isEmpty()) 
   { 
      int p = StdIn.readInt(); 
      int q = StdIn.readInt(); 
      if (uf.connected(p, q)) continue; 
      uf.union(p, q); 
      StdOut.println(p + " " + q); 
   } 
} 

% more tiny.txt 
10 
4 3 
3 8 
6 5 
9 4 
2 1 
8 9 
5 0 
7 2 
6 1 
1 0 
6 7 



11 

‣ dynamic connectivity 
‣ quick find 
‣ quick union 
‣ improvements 
‣ applications 



12 

Data structure. 
• Integer array id[] of size N. 
• Interpretation:  p and q in same component iff they have the same id. 

  i   0  1  2  3  4  5  6  7  8  9 
id[i] 0  1  9  9  9  6  6  7  8  9 

5 and 6 are connected 

2, 3, 4, and 9 are connected 

Quick-find  [eager approach] 

0 1 2 3 4 

5 6 7 8 9 



13 

Data structure. 
• Integer array id[] of size N. 
• Interpretation:  p and q in same component iff they have the same id. 

 
 
 
 
  Find.  Check if p and q have the same id. 
 

  i   0  1  2  3  4  5  6  7  8  9 
id[i] 0  1  9  9  9  6  6  7  8  9 

id[3] = 9; id[6] = 6 

3 and 6 in different components 

Quick-find  [eager approach] 

5 and 6 are connected 

2, 3, 4, and 9 are connected 

Presenter
Presentation Notes
find is fast because you just look up two array entries



14 

Data structure. 
• Integer array id[] of size N. 
• Interpretation:  p and q in same component iff they have the same id. 
 
 
 
 
  Find.  Check if p and q have the same id. 
 
 
 
Union.  To merge sets containing p and q, change all entries with id[p] to id[q]. 

  i   0  1  2  3  4  5  6  7  8  9 
id[i] 0  1  9  9  9  6  6  7  8  9 

union of 3 and 6 

2, 3, 4, 5, 6, and 9 are connected 

  i   0  1  2  3  4  5  6  7  8  9 
id[i] 0  1  6  6  6  6  6  7  8  6 

problem: many values can change 

Quick-find  [eager approach] 

5 and 6 are connected 

2, 3, 4, and 9 are connected 

id[3] = 9; id[6] = 6 

3 and 6 in different components 

Presenter
Presentation Notes
challenge is updating data structure to maintain this property
Note: could also update all entries with id[q] to id[p]



15 

Quick-find example 



16 

public class QuickFindUF 
{ 
   private int[] id; 
 
   public QuickFindUF(int N) 
   { 
      id = new int[N]; 
      for (int i = 0; i < N; i++) 
         id[i] = i; 
   } 
 
   public boolean connected(int p, int q) 
   {  return id[p] == id[q];  } 
 
   public void union(int p, int q) 
   { 
      int pid = id[p]; 
      int qid = id[q]; 
      for (int i = 0; i < id.length; i++) 
         if (id[i] == pid) id[i] = qid; 
   } 
} 

change all entries with id[p] to id[q] 

(linear number of array accesses) 

set id of each object to itself 

(N array accesses) 

Quick-find:  Java implementation 

check whether p and q 

are in the same component 

(2 array accesses) 

Presenter
Presentation Notes
Caveat:  need to save away pid = id[p] since id[p] might change



17 

Cost model.  Number of array accesses (for read or write). 
 
 
 
 
 
 
 
Quick-find defect. 
• Union too expensive. 
• Trees are flat, but too expensive to keep them flat. 
• Ex.  Takes N 2 array accesses to process sequence of 

N union commands on N objects. 

Quick-find is too slow 

algorithm init union find 

quick-find N N 1 

Presenter
Presentation Notes
 this is order-of-growth of number of array accesses - we discard constants





19 

‣ dynamic connectivity 
‣ quick find 
‣ quick union 
‣ improvements 
‣ applications 



20 

Data structure. 
• Integer array id[] of size N. 
• Interpretation:  id[i] is parent of i. 
• Root of i is id[id[id[...id[i]...]]]. 

Quick-union  [lazy approach] 

  i   0  1  2  3  4  5  6  7  8  9 
id[i] 0  1  9  4  9  6  6  7  8  9 

3 

5 4 2 

7 0 1 9 6 8 

p 

q 

keep going until it doesn’t change 

3's root is 9; 5's root is 6 

Presenter
Presentation Notes
3s parent is 4, 4s parent is 9
could use parent pointer/reference instead of id[] array, but array easier if objects are 0..N-1



21 

Data structure. 
• Integer array id[] of size N. 
• Interpretation:  id[i] is parent of i. 
• Root of i is id[id[id[...id[i]...]]]. 

 
 

 
 
Find.  Check if p and q have the same root. 
 

  i   0  1  2  3  4  5  6  7  8  9 
id[i] 0  1  9  4  9  6  6  7  8  9 

Quick-union  [lazy approach] 

keep going until it doesn’t change 

3 

5 4 2 

7 0 1 9 6 8 

3's root is 9; 5's root is 6 

3 and 5 are in different components  

p 

q 



22 

Data structure. 
• Integer array id[] of size N. 
• Interpretation:  id[i] is parent of i. 
• Root of i is id[id[id[...id[i]...]]]. 

 
 

 
 
Find.  Check if p and q have the same root. 
 
Union.  To merge sets containing p and q, 
set the id of p's root to the id of q's root. 

3 

5 

4 

7 0 1 

9 

6 8 

2 

3 

5 4 2 

7 0 1 9 6 8 
  i   0  1  2  3  4  5  6  7  8  9 
id[i] 0  1  9  4  9  6  6  7  8  9 

3's root is 9; 5's root is 6 

3 and 5 are in different components  

  i   0  1  2  3  4  5  6  7  8  9 
id[i] 0  1  9  4  9  6  6  7  8  6 

only one value changes 
p 

q 

Quick-union  [lazy approach] 

p 

q 

keep going until it doesn’t change 

Presenter
Presentation Notes
only have to change one array entry to execute union, but price you pay is traveling up tree to find roots.



23 

Quick-union example 



24 

Quick-union example 



25 

Quick-union:  Java implementation 

public class QuickUnionUF{   private int[] id;   
public QuickUnionUF(int N)   {      id = new 
int[N]; 
      for (int i = 0; i < N; i++) id[i] = i;   }   
private int root(int i)   { 
      while (i != id[i]) i = id[i]; 
      return i;   }   public boolean connected(int 
p, int q)   {      return root(p) == root(q);   }   
public void union(int p, int q)   { 
      int i = root(p), j = root(q); 
      id[i] = j;   } 
} 

set id of each object to itself 

(N array accesses) 

chase parent pointers until reach root 

(depth of i array accesses) 

check if p and q have same root 

(depth of p and q array accesses) 

change root of p to point to root of q 

(depth of p and q array accesses) 



26 

Cost model.  Number of array accesses (for read or write). 
 
 
 
 
 
 
 
 
Quick-find defect. 
• Union too expensive (N array accesses). 
• Trees are flat, but too expensive to keep them flat. 

 
Quick-union defect. 
• Trees can get tall. 
• Find too expensive (could be N array accesses). 

worst case 

† includes cost of finding root 

Quick-union is also too slow 

algorithm init union find 

quick-find N N 1 

quick-union N   N † N 



27 

‣ dynamic connectivity 
‣ quick find 
‣ quick union 
‣ improvements 
‣ applications 



28 

Weighted quick-union. 
• Modify quick-union to avoid tall trees. 
• Keep track of size of each tree (number of objects). 
• Balance by linking small tree below large one. 

Improvement 1:  weighting 





30 

Quick-union and weighted quick-union example 



31 

Data structure.  Same as quick-union, but maintain extra array sz[i] 
to count number of objects in the tree rooted at i. 

 
Find.  Identical to quick-union. 
 
 
 
 
Union.  Modify quick-union to: 
• Merge smaller tree into larger tree. 
• Update the sz[] array. 

 int i = root(p); 
 int j = root(q); 
 if  (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }  
 else                { id[j] = i; sz[i] += sz[j]; }   

Weighted quick-union:  Java implementation 

return root(p) == root(q); 



32 

Running time. 
• Find:  takes time proportional to depth of p and q. 
• Union:  takes constant time, given roots. 

 
Proposition.  Depth of any node x is at most lg N. 

Weighted quick-union analysis 

3 

x 

5 

4 

2 

7 

0 

1 

8 

9 

6 

N = 10 

depth(x) = 3 δ   lg N 



33 

Running time. 
• Find:  takes time proportional to depth of p and q. 
• Union:  takes constant time, given roots. 

 
Proposition.  Depth of any node x is at most lg N. 
Pf.  When does depth of x increase? 
Increases by 1 when tree T1 containing x is merged into another tree T2. 
• The size of the tree containing x at least doubles since | T 2 |  ε   | T 1 |. 
• Size of tree containing x can double at most lg N times. Why? 
 

Weighted quick-union analysis 

 
  T2 T1 

x 

Presenter
Presentation Notes
could also merge by height or rank, as done in some textbooks, but union by size achieves same amortized complexity
since we are merging by size, size(T1) >= size(T2)



34 

Running time. 
• Find:  takes time proportional to depth of p and q. 
• Union:  takes constant time, given roots. 

 
Proposition.  Depth of any node x is at most lg N. 
 
 
 
 
 

 
 

 
 
Q.  Stop at guaranteed acceptable performance? 
A.   No, easy to improve further. 

† includes cost of finding root 

Weighted quick-union analysis 

algorithm init union find 

quick-find N N 1 

quick-union N   N † N 

weighted QU N lg N  † lg N 



35 

10 

Quick union with path compression.  Just after computing the root of p, 
set the id of each examined node to point to that root. 

2 

4 12 11 

0 

9 

7 8 

1 3 6 

5 

2 

5 4 

7 

8 

12 11 

0 

1 

3 

6 

9 

root(9) 

Improvement 2:  path compression 

p 

10 



36 

Standard implementation:  add second loop to find() to set the id[] 
of each examined node to the root. 
 
Simpler one-pass variant:  halve the path length by making every other 
node in path point to its grandparent. 

 
 
 
 
 
 
 
 
 

In practice.  No reason not to!  Keeps tree almost completely flat. 

only one extra line of code ! 

public int root(int i) 
{ 
   while (i != id[i]) 
   { 
      id[i] = id[id[i]]; 
      i = id[i]; 
   } 
   return i; 
} 

Path compression:  Java implementation 

Presenter
Presentation Notes
can avoid second pass by using "halving."



37 

Weighted quick-union with path compression example 

1 linked to 6 because of 

path compression 

7 linked to 6 because of 

path compression 



38 

Proposition.  Starting from an empty data structure, 
any sequence of M union−find operations on N objects 
makes at most proportional to N + M lg* N array accesses. 
• Proof is very difficult. 
• Can be improved to N + M 〈 (M, N). 
• But the algorithm is still simple! 
 
Linear-time algorithm for M union-find ops on N objects? 
• Cost within constant factor of reading in the data. 
• In theory, WQUPC is not quite linear. 
• In practice, WQUPC is linear. 

 
 
 
Amazing fact.  No linear-time algorithm exists. 

see COS 423 

N lg* N 

1 0 

2 1 

4 2 

16 3 

65536 4 

265536 5 

Weighted quick-union with path compression: amortized analysis 

lg* function 

 

in "cell-probe" model of computation 

because lg* N is a constant in this universe 

Bob Tarjan 

(Turing Award '86) 

 

Presenter
Presentation Notes
Seems like performance has to get better. Really difficult problem that was open for a while.
Tarjan proved a tight bound relating it to inverse Ackermann function alpha(M, N) . We won't define here
iterated logarithm function = lg * = number of times needed to take the lg of a number until reaching 1 
Note: haven't yet introduced big Oh notation



39 

Bottom line.  WQUPC makes it possible to solve problems that 
could not otherwise be addressed. 
 
 
 
 
 
 
 
 
 
 
 
Ex.  [109 unions and finds with 109 objects] 
• WQUPC reduces time from 30 years to 6 seconds. 
• Supercomputer won't help much; good algorithm enables solution. 

M union−find operations on a set of N objects 

algorithm worst-case time 

quick-find M N 

quick-union M N 

weighted QU N + M log N 

QU + path compression N + M log N 

weighted QU + path compression N + M lg* N 

Summary 

Presenter
Presentation Notes
WQUPC on Java cell phone beats QF on supercomputer!
if we could do this well on every problem, we'd be in great shape! but lots of useful problems where N^2 or N^3 is easy, basic ideas in data structures hammers it to N log N or better.



40 

‣ dynamic connectivity 
‣ quick find 
‣ quick union 
‣ improvements 
‣ applications 







43 

A model for many physical systems: 
• N-by-N grid of sites. 
• Each site is open with probability p (or blocked with probability 1 − p). 
• System percolates iff top and bottom are connected by open sites. 
 

model system vacant site occupied site percolates 

electricity material conductor insulated conducts 

fluid flow material empty blocked porous 

social interaction population person empty communicates 

Percolation 



44 

Depends on site vacancy probability p. 
 
 
 
 
 
 
 
 

Likelihood of percolation 

p low (0.4) 

does not percolate 

p medium (0.6) 

percolates? 

p high (0.8) 

percolates 

Presenter
Presentation Notes
p = 0.4, 0.6, and 0.8, N = 20



45 

When N is large, theory guarantees a sharp threshold p*. 
• p > p*: almost certainly percolates. 
• p < p*: almost certainly does not percolate. 

 
Q.  What is the value of p* ? 

p* 

45 

Percolation phase transition 

N = 100 

Presenter
Presentation Notes
mathematical theory proves that a threshold exists (as N gets large), but does not provide a value



46 

• Initialize N-by-N whole grid to be blocked. 
• Declare random sites open until top connected to bottom. 
• Vacancy percentage estimates p*. 

Monte Carlo simulation 

N = 20 

empty open site 

(not connected to top) 

full open site 

(connected to top) 

blocked site 

Presenter
Presentation Notes
204 sites => vacancy percentage is 204/400 = 51%



47 

Q.  How to check whether an N-by-N system percolates? 
 

Dynamic connectivity solution to estimate percolation threshold 

open site 

blocked site 

N = 5 



48 

Q.  How to check whether an N-by-N system percolates? 
• Create an object for each site and name them 0 to N 2 – 1. 

Dynamic connectivity solution to estimate percolation threshold 

open site 

blocked site 

N = 5 0 1 2 3 4 

5 6 7 8 9 

10 11 12 13 14 

15 16 17 18 19 

20 21 22 23 24 



49 

Q.  How to check whether an N-by-N system percolates? 
• Create an object for each site and name them 0 to N 2 – 1.  
• Sites are in same set if connected by open sites. 

Dynamic connectivity solution to estimate percolation threshold 

open site 

blocked site 

N = 5 



50 

Q.  How to check whether an N-by-N system percolates? 
• Create an object for each site and name them 0 to N 2 – 1.  
• Sites are in same set if connected by open sites. 
• Percolates iff any site on bottom row is connected to site on top row. 

Dynamic connectivity solution to estimate percolation threshold 

brute-force algorithm: N 2 calls to connected() 

open site 

blocked site 

N = 5 



51 

Clever trick.  Introduce two virtual sites (and connections to top and bottom). 
• Percolates iff virtual top site is connected to virtual bottom site. 

Dynamic connectivity solution to estimate percolation threshold 

virtual top site 

virtual bottom site 

efficient algorithm: only 1 call to connected() 

open site 

blocked site 

N = 5 



52 

Clever trick.  Introduce two virtual sites (and connections to top and bottom). 
• Percolates iff virtual top site is connected to virtual bottom site. 
• Open site is full iff connected to virtual top site. 

Dynamic connectivity solution to estimate percolation threshold 

empty open site 

(not connected to top) 

full open site 

(connected to top) 

blocked site 

N = 5 

virtual top site 

virtual bottom site 

needed only for visualization 

Presenter
Presentation Notes
a bit of a cheat if "backwash" (then sites connected to bottom row will be declared full after system percolates)



53 

Q.  How to model as dynamic connectivity problem when opening a new site? 
 

Dynamic connectivity solution to estimate percolation threshold 

open site 

blocked site 

N = 5 

open this site 



54 

Q.  How to model as dynamic connectivity problem when opening a new site? 
A.  Connect new site to all of its adjacent open sites. 

Dynamic connectivity solution to estimate percolation threshold 

open this site 

open site 

blocked site 

N = 5 

up to 4 calls to union() 



55 

Steps to developing a usable algorithm. 
• Model the problem. 
• Find an algorithm to solve it. 
• Fast enough? Fits in memory? 
• If not, figure out why. 
• Find a way to address the problem. 
• Iterate until satisfied. 

 
The scientific method. 
 
Mathematical analysis. 

Subtext of today’s lecture (and this course) 

Presenter
Presentation Notes
and computational complexity


	Slides from Kevin Wayne on Union-Find and Percolotion
	Subtext of today’s lecture (and this course)
	Slide Number 3
	Dynamic connectivity
	Connectivity example
	Modeling the objects
	Modeling the connections
	Implementing the operations
	Union-find data type (API)
	Dynamic-connectivity client
	Slide Number 11
	Quick-find  [eager approach]
	Quick-find  [eager approach]
	Quick-find  [eager approach]
	Quick-find example
	Quick-find:  Java implementation
	Quick-find is too slow
	Slide Number 18
	Slide Number 19
	Quick-union  [lazy approach]
	Quick-union  [lazy approach]
	Quick-union  [lazy approach]
	Quick-union example
	Quick-union example
	Quick-union:  Java implementation
	Quick-union is also too slow
	Slide Number 27
	Improvement 1:  weighting
	Slide Number 29
	Quick-union and weighted quick-union example
	Weighted quick-union:  Java implementation
	Weighted quick-union analysis
	Weighted quick-union analysis
	Weighted quick-union analysis
	Improvement 2:  path compression
	Path compression:  Java implementation
	Weighted quick-union with path compression example
	Weighted quick-union with path compression: amortized analysis
	Summary
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Percolation
	Likelihood of percolation
	Percolation phase transition
	Monte Carlo simulation
	Dynamic connectivity solution to estimate percolation threshold
	Dynamic connectivity solution to estimate percolation threshold
	Dynamic connectivity solution to estimate percolation threshold
	Dynamic connectivity solution to estimate percolation threshold
	Dynamic connectivity solution to estimate percolation threshold
	Dynamic connectivity solution to estimate percolation threshold
	Dynamic connectivity solution to estimate percolation threshold
	Dynamic connectivity solution to estimate percolation threshold
	Subtext of today’s lecture (and this course)

