CPS102 Recitation

February 5, 2007

Problem 1

How many subsets of a set with 10 elements a) have fewer than 5 elements? b) have more than 7 elements? c) have an odd number of elements?

Solution: a) find the number of r-element subsets for $\mathrm{r}=0,1,2,3,4$ and add. $C(10,0)+$ $C(10,1)+C(10,2)+C(10,3)+C(10,4)=1+10+45+120+210=386$ b) $C(10,8)+C(10,9)+C(10,10)=C(10,2)+C(10,1)+C(10,0)=45+10+1=56$ c) $C(10,1)+C(10,3)+C(10,5)+C(10,7)+C(10,9)=512$

Problem 2

A shelf holds 12 books in a row. How many ways are there to choose 5 books so that no two adjacent books are chosen? Hint: represent the books that are chosen by bars and the books not chosen by stars. Count the number of sequences of 5 bars and 7 stars so that no 2 bars are adjacent.

Solution: There are 5 bars, 6 places where 7 stars can fit. Each of the 2nd through 5th of these slots must have at least 1 star in it. Once we have placed these 4 stars, there are 3 stars to be placed in 6 slots. The number of ways to do this is therefore $\mathrm{C}(6+3-1,3)=$ $\mathrm{C}(8,3)=56$

Problem 3

How many solutions does the equation

$$
x_{1}+x_{2}+x_{3}=8
$$

have, where x_{1}, x_{2}, x_{3} are nonnegative integers?
Solution: A way to select 8 items from a set with 3 elements, so that x_{1} number of type 1 , etc. The solution is equal to the number of 8 -combinations with repetitions allowed from a set with 3 elements. $\mathrm{C}(3+8-1,8)$

Problem 4

How many solutions are there to the inequality

$$
x_{1}+x_{2}+x_{3} \leq 11
$$

where x_{1}, x_{2}, x_{3} are nonnegative integers? Hint: introduce a variable x_{4} such that $x_{1}+x_{2}+$ $x_{3}+x_{4}=11$.

Solution: x_{4} is nonnegative, same as count the number of nonnegative solutions to the equality. It is $\mathrm{C}(4+11-1,11)=\mathrm{C}(14,3)=364$. Theorem: there are $\mathrm{C}(\mathrm{n}+\mathrm{r}-1, \mathrm{r})$ r-combinations from a set with n elements when repetition of elements is allowed.

Problem 5

How many ways are there to put n identical objects into m distinct containers so that no container is empty?

Solution: solve the equation $x_{1}+x_{2}+\ldots x_{m}=n$ such that $x_{i} \geq 1$, same as $y_{1}+\ldots y_{m}=n-m$ such that $y_{j}=x_{i}+1 . C(m+(n-m)-1, n-m)=C(n-1, n-m)$. Assume $n \geq m$

