
18 Probability in Hashing

A popular method for storing a collection of items to sup-
port fast look-up is hashing them into a table. Trouble
starts when we attempt to store more than one item in the
same slot. The efficiency of all hashing algorithms de-
pends on how often this happens.

Birthday paradox. We begin with an instructive ques-
tion about birthdays. Consider a group ofn people. Each
person claims one particular day of the year as her birth-
day. For simplicity, we assume that nobody claims Febru-
ary 29 and we talk about years consisting ofk = 365 days
only. Assume also that each day is equally likely for each
person. In other words,

P (personi is born on dayj) =
1

k
,

for all i and allj. Collecting the birthdays of then peo-
ple, we get a multiset ofn days during the year. We are
interested in the event,A, that at least two people have the
same birthday. Its probability is one minus the probability
that then birthdays are distinct, that is,

P (A) = 1 − P (Ā)

= 1 −
k

k
·
k − 1

k
· . . . ·

k − n + 1

k

= 1 −
k!

(k − n)!kn
.

The probability ofA surpasses one half whenn exceeds
21, which is perhaps surprisingly early. See Figure 22 for
a display how the probability grows with increasingn.

364: 0.0027
363: 0.0082
362: 0.0163
361: 0.0271

360: 0.0404
359: 0.0562
358: 0.0743
357: 0.0946
356: 0.1169 346: 0.4114

347: 0.3791
348: 0.3469
349: 0.3150
350: 0.2836

351: 0.2529
352: 0.2231
353: 0.1944
354: 0.1670
355: 0.1411 345: 0.4436

344: 0.4756
343: 0.5072
342: 0.5383
341: 0.5686

340: 0.5982
339: 0.6268
338: 0.6544
337: 0.6809
336: 0.7063 326: 0.8912

327: 0.8782
328: 0.8640
329: 0.8487
330: 0.8321

331: 0.8143
332: 0.7953
333: 0.7749
334: 0.7533
335: 0.7304

0

10 20 30 40

1

0

n

Figure 22: The probability that at least two people in a groupof
n share the same birthday.

Hashing. The basic mechanism in hashing is the same
as in the assignment of birthdays. We haven items and
map each to one ofk slots. We assume then choices of
slots are independent. Acollision is the event that an item

is mapped to a slot that already stores an item. A possible
resolution of a collision adds the item at the end of a linked
list that belongs to the slot, but there are others. We are
interested in the following quantities:

1. the expected number of items mapping to same slot;

2. the expected number of empty slots;

3. the expected number of collisions;

4. the expected number of items needed to fill allk slots.

Different hashing algorithms use different mechanisms for
resolving collisions. The above quantities have a lot to say
about the relative merits of these algorithms.

Items per slot. Since all slots are the same and none is
more preferred than any other, we might as well determine
the expected number of items that are mapped to slot1.
Consider the corresponding indicator random variable,

Xi =

{

1 if item i is mapped to slot1;
0 otherwise.

The number of items mapped to slot1 is thereforeX =
X1 + X2 + . . . + Xn. The expected value ofXi is 1

k
, for

eachi. Hence, the expected number of items mapped to
slot1 is

E(X) =
n

∑

i=1

E(Xi) =
n

k
.

But this is obvious in any case. As mentioned earlier, the
expected number of items is the same for every slot. Writ-
ing Yj for the number of items mapped to slotj, we have
Y =

∑k

j=1
Yj = n. Similarly,

E(Y ) =

k
∑

j=1

E(Yj) = n.

Since the expectations are the same for all slots, we there-
fore haveE(Yj) = n

k
, for eachj.

Empty slots. The probability that slotj remains empty
after mapping alln items is(1 −

1

k
)n. Defining

Xj =

{

1 if slot j remains empty;
0 otherwise,

we thus getE(Xj) = (1 −
1

k
)n. The number of empty

slots isX = X1 + X2 + . . . + Xk. Hence, the expected

51



number of empty slots is

E(X) =

k
∑

j=1

E(Xj) = k

(

1 −
1

k

)n

.

Fork = n, we havelimn→∞(1− 1

n
)n = e−1 = 0.367 . . .

In this case, we can expect about a third of the slots to
remain empty.

Collisions. The number of collisions can be determined
from the number of empty slots. WritingX for the num-
ber of empty slots, as before, we havek−X items hashed
without collision and therefore a total ofn − k + X col-
lisions. WritingZ for the number of collisions, we thus
get

E(Z) = n − k + E(X)

= n − k + k

(

1 −
1

k

)n

.

For k = n, we getlimn→∞ n(1 − 1

n
)n = n

e
. In words,

about a third of the items cause a collision.

Filling all slots. How many items do we need to map
to thek slots until they store at least one item each? For
obvious reasons, this question is sometimes referred to as
the coupons collector problem. The crucial idea here is
to defineXj equal to the number of items it takes to go
from j − 1 to j filled slots. Filling thej-th slot is an
infinite Bernoulli process with success probability equal
to p = k−j+1

k
. Last lecture, we learned that the ex-

pected number of trials until the first success is1

p
. Hence,

E(Xj) = k
k−j+1

. The number of items needed to fill all
slots isX = X1 + X2 + . . . + Xk. The expected number
is therefore

E(X) =

k
∑

j=1

E(Xj)

=

k
∑

j=1

k

k − j + 1

= k

k
∑

j=1

1

j

= kHk.

As mentioned during last lecture, this is approximatelyk

times the natural logarithm ofk. More precisely, we have
k ln(k + 1) ≤ kHk ≤ k(1 + ln k).

Summary. Today, we applied basic probabilistic con-
cepts to get insight into the performance of hashing al-
gorithms. Most importantly, we computed expectations
by decomposing random variables into indicator random
variables, which we added using the Linearity of Expecta-
tion.

52


