
Basics of Logic Design:  
Boolean Algebra, Logic Gates 

Computer Science 104 
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Administrative 

•  Homework #3 Due tonight 
•  Midterm I Monday in class, open book, open notes 

 Book/notes for instruction reference mainly, don’t rely them 
for other things 

CPS 104 
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Outline 
•  Building the building blocks… 
•  Logic Design 

 Truth tables, Boolean functions, Gates and Circuits 

Reading 
•  4.2 of text, but we are going into more detail than the 

text  
•  any other online resource you can find 

Today’s Lecture 
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What We’ve Done, Where We’re Going 

I/O system CPU 

Compiler 

Operating 
System 

Application 

Digital Design 
Circuit Design 

Instruction Set 
Architecture, 
Memory, I/O 

Firmware 

Memory 

Software 

Hardware 

Interface Between 
HW and SW 

Top Down 

Bottom UP to CPU 
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Digital Design 

•  Logic Design, Switching Circuits, Digital Logic  
Recall: Everything is built from transistors 
•  A transistor is a switch 
•  It is either on or off 
•  On or off can represent True or False 
Given a bunch of bits (0 or 1)… 
•  Is this instruction a movl or a je? 
•  What register do I read? 
•  How do I add two numbers? 
•  Need a method to reason about complex expressions 
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a b c  f1f2 
0 0 0  0 1 
0 0 1  1 1 
0 1 0  1 0 
0 1 1  0 0 
1 0 0  1 0 
1 1 0  0 1 
1 1 1  1 1 

Boolean Algebra 

•  Boolean functions have arguments that take two 
values ({T,F} or {1,0}) and they return a single or a set 
of ({T,F} or {1,0}) value(s). 

•  Boolean functions can always be represented by a 
table called a “Truth Table” 

•  Example:     F: {0,1}3 -> {0,1}2  
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a  NOT(a) 
0    1 
1    0 

a  b  AND(a,b) 
0  0     0 
0  1     0 
1  0     0 
1  1     1 

a  b  OR(a,b) 
0  0     0 
0  1     1 
1  0     1 
1  1     1 

a  b  XOR(a,b) 
0  0     0 
0  1     1 
1  0     1 
1  1     0 

a  b  XNOR(a,b) 
0  0     1 
0  1     0 
1  0     0 
1  1     1 

a  b  NOR(a,b) 
0  0     1 
0  1     0 
1  0     0 
1  1     0 

Boolean Functions 

•  Example Boolean Functions: NOT, AND, OR, XOR, . . .  
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Boolean Functions and Expressions 

•  Boolean algebra notation: Use * for AND, + for OR,  ~ 
for NOT. 
 NOT is also written as A’ and A 

•  Using the above notation we can write Boolean 
expressions for functions 

   F(A, B, C) = (A * B) + (~A * C) 

•  We can evaluate the Boolean expression with all 
possible argument values to construct a truth table. 

•  What is truth table for F? 
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Boolean Function Simplification 

•  Boolean expressions can be simplified by using the 
following rules (bitwise logical): 
 A*A = A 
 A* 0 = 0 
 A*1 = A 
 A*~A = 0 

 A+A = A 
 A+0 = A 
 A+1 = 1 
 A+~A = 1 

 A*B = B*A 
 A*(B+C) =  (B+C)*A = A*B + A*C 
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Boolean Function Simplification 

a b c  f1f2 
0 0 0  0 1 
0 0 1  1 1 
0 1 0  0 0 
0 1 1  1 0 
1 0 0  0 0 
1 0 1  1 0 
1 1 0  0 1 
1 1 1  1 1 

f1 = ~a*~b*c + ~a*b*c + a*~b*c + a*b*c 

f2 = ~a*~b*~c + ~a*~b*c + a*b*~c + a*b*c 

Simplify these functions... 
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a  b  XNOR(a,b) 
0  0     1 
0  1     0 
1  0     0 
1  1     1 

XNOR = (~a * ~b) + (a * b) 

Boolean Functions and Expressions 

•  The Fundamental Theorem of Boolean Algebra: 
Every Boolean function can be written in disjunctive 
normal form as an OR of ANDs (Sum-of products) of 
it’s arguments or their complements. 

“Proof:” Write the truth table, construct sum-of-
product from the table. 
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a b c  f1f2 
0 0 0  0 1 
0 0 1  1 1 
0 1 0  1 0 
0 1 1  0 0 
1 0 0  1 0 
1 1 0  0 1 
1 1 1  1 1 

f1 = ~a*~b*c + ~a*b*~c + a*~b*~c + a*b*c 

f2 = ~a*~b*~c + ~a*~b*c + a*b*~c + a*b*c 

Boolean Functions and Expressions 

•  Example-2: 



15 © Alvin R. Lebeck CPS 104 

Applying the Theory 

•  Lots of good theory 
•  Can reason about complex boolean expressions 
•  Now we have to make it real… 
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a 
b 

AND(a,b) a 
b 

OR(a,b) 

XOR(a,b) a 
b 

NAND(a,b) a 
b 

a 
b 

NOR(a,b) XNOR(a,b) a 
b 

a NOT(a) 

Boolean Gates  

•  Gates are electronic devices that implement simple 
Boolean functions 

Examples 
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Reality Check 

•  Basic 1 or 2 Input Boolean Gate 1- 4 Transistors 
Pentium III  
•  Processor Core 9.5 Million Transistors 
•  Total: 28 Million Transistors 
Pentium 4 
•  Total: 42 Million Transistors 
Core2 Duo (two cores) 
•  Total: 290 Million Transistors 
Corei7 (4 cores) 
•  Total: 731 Million Transistors 

•  Insert Tangent about what a transistor is… 
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F = ~a*b + ~b*a 

a 

b F 

a  b  XOR(a,b) 
0  0     0 
0  1     1 
1  0     1 
1  1     0 

Boolean Functions, Gates  and Circuits 

•  Circuits are made from a network of gates. (function 
compositions). 

XOR(a,b) a 
b 
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Digital Design Examples 

Input: 2 bits representing an unsigned number (n) 
Output: n2 as 4-bit unsigned binary number 

Input: 2 bits representing an unsigned number (n) 
Output: 3-n as unsigned binary number 
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Design Example 

•  Consider machine with 4 registers 
•  Given 2-bit input (register specifier, I1, I0) 
•  Want one of 4 output bits (O3-O0) to be 1   

 E.g., allows a single register to be accessed 

•  What is the circuit for this? 
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More Design Examples 

•  X is a 3-bit quantity 
1.  Write a logic function that is true if and only if X contains at 

least two 1s.  

2.  Implement the logic function from problem 1. using only AND, 
OR and NOT gates. (Note there are no constraints on the 
number of gate inputs.)  By implement, I mean draw the circuit 
diagram. 

3.  Write a logic function that is true if and only if X, when 
interpreted as an unsigned binary number, is greater than the 
number 4.  

4.  Implement the logic function from problem 3. using only AND, 
OR and NOT gates. (Note there are no constraints on the 
number of gate inputs.) 
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Parity Example 

•  The parity code of a binary word counts the number 
of ones in a word. If there are an even number of 
ones the parity code is 0, if there are an odd number 
of ones the parity code is 1. For example, the parity 
of 0101 is 0, and the parity of 1101 is 1.  

•  Construct the truth table for a function that 
computes the parity of a four-bit word. Implement 
this function using AND, OR and NOT gates. (Note 
there are no constraints on the number of gate 
inputs.) 



23 © Alvin R. Lebeck CPS 104 

Circuit Example: Decoder 

I1  I0   Q0 Q1 Q2 Q3 

0  0    1   0   0   0 

0  1    0   1   0   0 

1  0    0   0   1   0 

1  1    0   0   0   1 
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s 

a 
b 

y 

Y = (A * S) + (B * ~S) 

B 

A 

S 

Gate 3 

Gate 2 

Gate 1 

Circuit Example: 2x1  MUX 

MUX(A, B, S) = (A * S) + (B * ~S) 

Multiplexor (MUX)  selects from one of many inputs 
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Example 4x1 MUX 

0 

1 

2 

3 a 

b 

c 

d 

y 

S 

2 

a 
b 

c 
d 

y 

s0 s1 
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Arithmetic and Logical Operations in ISA 

•  What operations are there? 
•  How do we implement them? 

 Consider a 1-bit Adder 



27 © Alvin R. Lebeck CPS 104 

Summary 

•  Boolean Algebra & functions 
•  Logic gates (AND, OR, NOT, etc) 
•  Multiplexors 
Reading 
•  4.2 of text 
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DeMorgan’s Laws 

•  ~(A+B) = ~A * ~B 
•  ~(A*B) = ~A + ~B 
Example: 

•  ~C*~A*B + ~C*A*~B + C*A*B + C*~A*~B 
•  Use only XOR to represent this function 


