
Basics of Logic Design:
Boolean Algebra, Logic Gates

Computer Science 104

2 © Alvin R. Lebeck

Administrative

•  Homework #3 Due tonight
•  Midterm I Monday in class, open book, open notes

 Book/notes for instruction reference mainly, don’t rely them
for other things

CPS 104

3 © Alvin R. Lebeck CPS 104

Outline
•  Building the building blocks…
•  Logic Design

 Truth tables, Boolean functions, Gates and Circuits

Reading
•  4.2 of text, but we are going into more detail than the

text
•  any other online resource you can find

Today’s Lecture

4 © Alvin R. Lebeck CPS 104

What We’ve Done, Where We’re Going

I/O system CPU

Compiler

Operating
System

Application

Digital Design
Circuit Design

Instruction Set
Architecture,
Memory, I/O

Firmware

Memory

Software

Hardware

Interface Between
HW and SW

Top Down

Bottom UP to CPU

5 © Alvin R. Lebeck CPS 104

Digital Design

•  Logic Design, Switching Circuits, Digital Logic
Recall: Everything is built from transistors
•  A transistor is a switch
•  It is either on or off
•  On or off can represent True or False
Given a bunch of bits (0 or 1)…
•  Is this instruction a movl or a je?
•  What register do I read?
•  How do I add two numbers?
•  Need a method to reason about complex expressions

6 © Alvin R. Lebeck CPS 104

a b c f1f2
0 0 0 0 1
0 0 1 1 1
0 1 0 1 0
0 1 1 0 0
1 0 0 1 0
1 1 0 0 1
1 1 1 1 1

Boolean Algebra

•  Boolean functions have arguments that take two
values ({T,F} or {1,0}) and they return a single or a set
of ({T,F} or {1,0}) value(s).

•  Boolean functions can always be represented by a
table called a “Truth Table”

•  Example: F: {0,1}3 -> {0,1}2

7 © Alvin R. Lebeck CPS 104

a NOT(a)
0 1
1 0

a b AND(a,b)
0 0 0
0 1 0
1 0 0
1 1 1

a b OR(a,b)
0 0 0
0 1 1
1 0 1
1 1 1

a b XOR(a,b)
0 0 0
0 1 1
1 0 1
1 1 0

a b XNOR(a,b)
0 0 1
0 1 0
1 0 0
1 1 1

a b NOR(a,b)
0 0 1
0 1 0
1 0 0
1 1 0

Boolean Functions

•  Example Boolean Functions: NOT, AND, OR, XOR, . . .

8 © Alvin R. Lebeck CPS 104

Boolean Functions and Expressions

•  Boolean algebra notation: Use * for AND, + for OR, ~
for NOT.
 NOT is also written as A’ and A

•  Using the above notation we can write Boolean
expressions for functions

 F(A, B, C) = (A * B) + (~A * C)

•  We can evaluate the Boolean expression with all
possible argument values to construct a truth table.

•  What is truth table for F?

10 © Alvin R. Lebeck CPS 104

Boolean Function Simplification

•  Boolean expressions can be simplified by using the
following rules (bitwise logical):
 A*A = A
 A* 0 = 0
 A*1 = A
 A*~A = 0

 A+A = A
 A+0 = A
 A+1 = 1
 A+~A = 1

 A*B = B*A
 A*(B+C) = (B+C)*A = A*B + A*C

11 © Alvin R. Lebeck CPS 104

Boolean Function Simplification

a b c f1f2
0 0 0 0 1
0 0 1 1 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 0 1
1 1 1 1 1

f1 = ~a*~b*c + ~a*b*c + a*~b*c + a*b*c

f2 = ~a*~b*~c + ~a*~b*c + a*b*~c + a*b*c

Simplify these functions...

13 © Alvin R. Lebeck CPS 104

a b XNOR(a,b)
0 0 1
0 1 0
1 0 0
1 1 1

XNOR = (~a * ~b) + (a * b)

Boolean Functions and Expressions

•  The Fundamental Theorem of Boolean Algebra:
Every Boolean function can be written in disjunctive
normal form as an OR of ANDs (Sum-of products) of
it’s arguments or their complements.

“Proof:” Write the truth table, construct sum-of-
product from the table.

14 © Alvin R. Lebeck CPS 104

a b c f1f2
0 0 0 0 1
0 0 1 1 1
0 1 0 1 0
0 1 1 0 0
1 0 0 1 0
1 1 0 0 1
1 1 1 1 1

f1 = ~a*~b*c + ~a*b*~c + a*~b*~c + a*b*c

f2 = ~a*~b*~c + ~a*~b*c + a*b*~c + a*b*c

Boolean Functions and Expressions

•  Example-2:

15 © Alvin R. Lebeck CPS 104

Applying the Theory

•  Lots of good theory
•  Can reason about complex boolean expressions
•  Now we have to make it real…

16 © Alvin R. Lebeck CPS 104

a
b

AND(a,b) a
b

OR(a,b)

XOR(a,b) a
b

NAND(a,b) a
b

a
b

NOR(a,b) XNOR(a,b) a
b

a NOT(a)

Boolean Gates

•  Gates are electronic devices that implement simple
Boolean functions

Examples

17 © Alvin R. Lebeck CPS 104

Reality Check

•  Basic 1 or 2 Input Boolean Gate 1- 4 Transistors
Pentium III
•  Processor Core 9.5 Million Transistors
•  Total: 28 Million Transistors
Pentium 4
•  Total: 42 Million Transistors
Core2 Duo (two cores)
•  Total: 290 Million Transistors
Corei7 (4 cores)
•  Total: 731 Million Transistors

•  Insert Tangent about what a transistor is…

18 © Alvin R. Lebeck CPS 104

F = ~a*b + ~b*a

a

b F

a b XOR(a,b)
0 0 0
0 1 1
1 0 1
1 1 0

Boolean Functions, Gates and Circuits

•  Circuits are made from a network of gates. (function
compositions).

XOR(a,b) a
b

19 © Alvin R. Lebeck CPS 104

Digital Design Examples

Input: 2 bits representing an unsigned number (n)
Output: n2 as 4-bit unsigned binary number

Input: 2 bits representing an unsigned number (n)
Output: 3-n as unsigned binary number

20 © Alvin R. Lebeck CPS 104

Design Example

•  Consider machine with 4 registers
•  Given 2-bit input (register specifier, I1, I0)
•  Want one of 4 output bits (O3-O0) to be 1

 E.g., allows a single register to be accessed

•  What is the circuit for this?

21 © Alvin R. Lebeck CPS 104

More Design Examples

•  X is a 3-bit quantity
1.  Write a logic function that is true if and only if X contains at

least two 1s.

2.  Implement the logic function from problem 1. using only AND,
OR and NOT gates. (Note there are no constraints on the
number of gate inputs.) By implement, I mean draw the circuit
diagram.

3.  Write a logic function that is true if and only if X, when
interpreted as an unsigned binary number, is greater than the
number 4.

4.  Implement the logic function from problem 3. using only AND,
OR and NOT gates. (Note there are no constraints on the
number of gate inputs.)

22 © Alvin R. Lebeck CPS 104

Parity Example

•  The parity code of a binary word counts the number
of ones in a word. If there are an even number of
ones the parity code is 0, if there are an odd number
of ones the parity code is 1. For example, the parity
of 0101 is 0, and the parity of 1101 is 1.

•  Construct the truth table for a function that
computes the parity of a four-bit word. Implement
this function using AND, OR and NOT gates. (Note
there are no constraints on the number of gate
inputs.)

23 © Alvin R. Lebeck CPS 104

Circuit Example: Decoder

I1 I0 Q0 Q1 Q2 Q3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

24 © Alvin R. Lebeck CPS 104

s

a
b

y

Y = (A * S) + (B * ~S)

B

A

S

Gate 3

Gate 2

Gate 1

Circuit Example: 2x1 MUX

MUX(A, B, S) = (A * S) + (B * ~S)

Multiplexor (MUX) selects from one of many inputs

25 © Alvin R. Lebeck CPS 104

Example 4x1 MUX

0

1

2

3 a

b

c

d

y

S

2

a
b

c
d

y

s0 s1

26 © Alvin R. Lebeck CPS 104

Arithmetic and Logical Operations in ISA

•  What operations are there?
•  How do we implement them?

 Consider a 1-bit Adder

27 © Alvin R. Lebeck CPS 104

Summary

•  Boolean Algebra & functions
•  Logic gates (AND, OR, NOT, etc)
•  Multiplexors
Reading
•  4.2 of text

28 © Alvin R. Lebeck CPS 104

DeMorgan’s Laws

•  ~(A+B) = ~A * ~B
•  ~(A*B) = ~A + ~B
Example:

•  ~C*~A*B + ~C*A*~B + C*A*B + C*~A*~B
•  Use only XOR to represent this function

