
Duke CPS 108 14.1

How Java works

● The java compiler takes a .java file and generates a .class file
➤ The .class file contains Java bytecodes, the assembler 

language for Java programs
➤ Bytecodes are executed in a JVM (java virtual machine), 

the valid bytecodes are specified by Sun
• What if third parties create platform/OS specific codes?

● The JVM interprets the bytecodes
➤ JVM is platform/OS specific, must ultimately run the code
➤ Different JVMs will have different performance, JITs are 

part of the overall JDK/Java performance



Duke CPS 108 14.2

JIT, Just In Time Compiler

● JVM ultimately translates bytecode into native code, each time 
the same bytecodes are processed, the translation into native 
code must be made

➤ If we can cache translated code we can avoid re-translating 
the same bytecode sequence

➤ Why not just translate the entire .java program into native 
code?

● Still need the JVM, the JIT works in conjunction with the 
JVM, not in place of it

● How are classes loaded into the JVM? Can this be thwarted?



Duke CPS 108 14.3

Loading .class files

● The bytecode verifier “proves theorems” about the bytecodes 
being loaded into the JVM

➤ These bytecodes may come from a non-Java source, e.g., 
compile Ada into bytecodes (why?)

● This verification is a static analysis of properties such as:
➤ .class file format (including magic number 0xCAFEBABE)
➤ Methods/instances used properly, parameters correct
➤ Stack doesn’t underflow/overflow
➤ …

● Verification is done by the JVM, not changeable as is, for 
example, the ClassLoader

http://securingjava.com

http://java.sun.com/sfaq/verifier.html



Duke CPS 108 14.4

The ClassLoader

● The “Primordial” loader is built-in to the JVM
➤ Sometimes called the “default” loader, but it’s not 

extensible or customizable the way other loaders are
➤ Loads classes from the platform on which the JVM runs 

(what are loader and JVM written in?)

● Applet class loader, RMI class loader, user loaders
➤ Load .class files from URLs, from other areas of platform 

on which JVM runs
➤ What’s the order of sources consulted for loading, does 

this make a difference?
● Why implement a custom loader?

➤ Work at Duke with JOIE



Duke CPS 108 14.5

The Java ClassLoader



Duke CPS 108 14.6

Security Manager

● Applets use a SecurityManager
➤ Query for permissions
➤ Supported by browsers by 

convention (would you use 
an “untrusted” browser)

● The picture shows JDK 1.0 
model, “sandbox” restrictions 
supported by SecurityManager

➤ Untrusted code restricted to 
the sandbox

➤ All downloaded/applets are 
untrusted

➤ Severely limits what a 
downloaded program can do



Duke CPS 108 14.7

SecurityManager changes in JDK 1.1

● Applets support signing using 
digital signatures

➤ Signature stored with code 
in JAR file that’s 
downloaded

➤ Clients support open/full 
access to “trusted” applets, 
some signatures ok

● Still “all-or-nothing”, an applet 
is untrusted or completely 
trusted

➤ What might be preferable?



Duke CPS 108 14.8

SecurityManager changes in JDK 1.2

● Policies are now supported
➤ Allow more fine-grained 

control of access, 
permission

➤ Based on location (URL) 
and/or digital signatures

➤ Uses public/private key, 
applets don’t need to be 
signed, can be from a 
trusted location

● Set policies on a systemwide 
basis using policytool

➤ What about user-level 
permissions?


