
1

Games

CPS 170
Ron Parr

Why Study Games?

• Many human activities can be modeled as
games
– Negotiations
– Bidding
– TCP/IP
– Military confrontations
– Pursuit/Evasion

• Games are used to train the mind
– Human game-playing, animal play-fighting

Why Are Games Good for AI?

• Games typically have concise rules
• Well-defined starting and end points
• Sensing and effecting are simplified

– Not true for sports games
– See robocup

• Games are fun!
• Downside: Getting taken seriously (not)

– See robo search and rescue

History of Games in AI

• Computer games have been around almost as
long as computers (perhaps longer)
– Chess: Turing (and others) in the 1950s
– Checkers: Samuel, 1950s learning program

• Usually start with naïve optimism
• Follow with naïve pessimism
• Simon: Computer chess champ by 1967
• Many, e.g., Kasparov, predicted that a computer

would never be champion

2

Games Today

• Computers perform at champion level
– Backgammon, Checkers, Chess, Othello

• Computers perform well
– Bridge

• Computers still do badly
– Go, Hex

Game Setup
• Most commonly, we study games that are:

– 2 player
– Alternating
– Zero-sum
– Perfect information

• Examples: Checkers, chess, backgammon
• Assumptions can be relaxed at some expense
• Economics studies case where number of

agents is very large
– Individual actions don’t change the dynamics

Zero Sum Games

• Assign values to different outcomes
• Win = 1, Loss = -1
• With zero sum games every gain comes at the

other player’s expense
• Sum of both player’s scores must be 0
• Are any games truly zero sum?

Characterizing Games

• Two-player games are very much like
search
– Initial state
– Successor function
– Terminal test
– Objective function (heuristic function)

• Unlike search
– Terminal states are often a large set
– Full search to terminal states usually impossible

3

Game Trees
x o x
o x

o

x o x
o x

o

x o x
o x

o

x o x
o x

o
x

x x

x o x
o x

o
x

x o x
o x

o
x

x o x
o x

ox

x o x
o x

ox

x o x
o x

ox

x o x
o x

oxo o
o

o
o

o

Player 1

Player 2

Player 1

Game Trees

Max nodes

Min nodes

Terminal Nodes

A1

A2
A3

A11 A12
A21 A22 A31 A32

Minimax

• Max player tries to maximize his return
• Min player tries to minimize his return
• This is optimal for both (zero sum)

)(minimaxmax)(minimax)(succesorsmax sn ns∈=

)(minimaxmin)(minimax)(succesorsmin sn ns∈=

Minimax Values

Max nodes

Min nodes

3 12 2 4 15 2

3 2 2

3

4

Minimax Properties

• Minimax can be run depth first
– Time O(bm)
– Space O(bm)

• Assumes that opponent plays optimally

• Based on a worst-case analysis

• What if this is incorrect?

Minimax in the Real World

• Search trees are too big
• Alternating turns double depth of the search

– 2 ply = 1 full turn
• Branching factors are too high

– Chess: 35
– Go: 361

• Search from start never terminates in non-
trivial games

Evaluation Functions
• Like heuristic functions
• Try to estimate value of a node without

expanding all the way to termination
• Using evaluation functions

– Do a depth-limited search
– Treat evaluation function as if it were terminal

• What’s wrong with this?

• How do you pick the depth?
• How do you manage your time?

• Iterative deepening, quiescence

Desiderata for Evaluation Functions

• Would like to put the same ordering on nodes (even
if values aren’t totally right)

• Is this a reasonable thing to ask for?
• What if you have a perfect evaluation function?
• How are evaluation functions made in practice?

– Buckets
– Linear combinations

• Chess pieces (material)
• Board control (positional, strategic)

5

Search Control Issues

• Horizon effects
– Sometimes something interesting is just

beyond the horizon
– How do you know?

• When to generate more nodes?
• If you selectively extend your frontier, how

do you decide where?
• If you have a fixed amount of total game

time, how do you allocate this?

Pruning

• The most important search control method is
figuring out which nodes you don’t need to
expand

• Use the fact that we are doing a worst-case
analysis to our advantage
– Max player cuts off search when he knows min

player can force a provably bad outcome
– Min player cuts of search when he knows max can

force a provably good (for max) outcome

Alpha-beta pruning

Max nodes

Min nodes

3 12 2 4 15 2

3 2 2

3

How to prune
• We still do (bounded) DFS
• Expand at least one path to the “bottom”
• If current node is max node, and min can

force a lower value, then prune siblings
• If curent node is min node, and max can

force a higher value, then prune siblings

6

Max node pruning

2 4

2

4

Max nodes

Implementing alpha-beta
max_value(state, alpha, beta)
if cutoff(state) then return eval(state)
for each s in successors(state) do
alpha = max(alpha, min_value(s, alpha, beta))
if alpha >= beta the return beta

end
return alpha

min_value(state, alpha, beta)
if cutoff(state) then return eval(state)
for each s in successors(state) do
beta = min(alpha, max_value(s, alpha, beta))
if beta <= alpha the return alpha

end
return beta

Amazing facts about alpha-beta

• Empirically, alpha-beta has the effect of
reducing the branching factor by half for
many problems

• This effectively doubles the horizon that
can be searched

• Alpha-beta makes the difference
between novice and expert computer
players

What About Probabilities?

Max nodes

Min nodes

Chance
nodes

P=0.5 P=0.5 P=0.6 P=0.4
P=0.9 P=0.1

7

Expectiminimax

• n random outcomes per chance node
• O(bmnm) time

)(eminimaxmax)(eminimax)(succesorsmax sn ns∈=
)(eminimaxmin)(eminimax)(succesorsmin sn ns∈=

)()(eminimax)(eminimax
)(succesorschance spsn
ns∑ ∈

=

Expectiminimax is nasty

• High branching factor
• Randomness makes evaluation fns difficult

– Hard to predict many steps into future
– Values tend to smear together
– Preserving order is not sufficient

• Pruning is problematic
– Need to prune based upon bound on an

expectation
– Need a priori bounds on the evaluation function

Multiplayer Games

• Things sort-of generalize
• We can maintain a vector of possible

values for each player at each node
• Assume that each player acts greedily
• What’s wrong with this?

Conclusions

• Game tree search is a special kind of search
• Rely heavily on heuristic evaluation functions
• Alpha-beta is a big win
• Most successful players use alpha-beta
• Final thought: Tradeoff between search

effort and evaluation function effort
• When is it better to invest in your evaluation

function?

