
Software Design 1.1

CPS 108, Spring 2004
Software Design and Implementation

Object oriented programming and design
• Language independent concepts including design patterns,

e.g., Model-View-Controller, iterator, factory, bridge, …
• Design independent concepts, e.g., coupling, cohesion, testing,

refactoring, profiling, …

What’s in the course?
C++ and Java, team projects, mastery exams

• team projects can be more and less than the sum of their parts

high-level abstractions, low-level details
• patterns, heuristics, and idioms

Software Design 1.2

Application Programming Interface, API
Standard C++ headers, STL headers

Curses
wxWindows

Java API
java.util, javax.swing, java.net, javax.crypto, …
Eclipse SWT

Google API

Gracenote API

Software Design 1.3

Program Design and Implementation
Language independent principles of design and
programming

design heuristics
• coupling, cohesion, small functions, small interfaces ...

design patterns
• factories, adapter, MVC, decorator, iterator, …

Language specific:
Idioms

• smart pointers, vectors/arrays, overloaded operators ...

idiosyncracies, idiocies
• must define virtual destructor, stream zoo in Java, ...

Software Design 1.4

Administrivia
check website and bulletin board regularly

http://www.cs.duke.edu/courses/cps108/current/
See links to bulletin board and other stuff

Grading (see web pages)
group projects: small, medium, large
mastery programs (solo or semi-solo endeavors)
readings and summaries
tests

Evaluating team projects, role of TA, UTA, consultants
face-to-face evaluation, early feedback

Compiling, tools, environments, Linux, Windows, Mac
g++ 3.3, Java 2 aka 1.4, JRE, …

Software Design 1.5

wordlines.cpp, understanding code
typedef map<string, set<int> > linemap;
while (getline(input,line)) {

linecount++;
istringstream iline(line);
while (iline >> w) {

linemap::iterator it = info.find(w);
if (it == info.end()) {

set<int> si;
si.insert(linecount);
info.insert(make_pair(w,si));

}
else {

it->second.insert(linecount);
}

}
}

Software Design 1.6

Questions about wordlines.cpp
Conceptually, what's a map and what's a set?

In terms of implementation how do they work?

What's an iterator (abstractly and concretely)

What are streams? ifstream, cin/cout, istring/ostring, …

What's a templated class?

Other questions?

Software Design 1.7

Classes: Review/Overview
A class encapsulates state and behavior

Behavior first when designing a class
Information hiding: who knows state/behavior?

State is private/protected; some behavior is public
Private/protected helper functions
A class is called an object factory, creates lots of instances

Classes communicate and collaborate
Parameters: send and receive
Containment: has a reference to
Inheritance: is-a

Software Design 1.8

C++ (and Java) class construction
C++ uses .h and .cpp, Java uses .java

Documentation different (javadoc vs. ???)

Default ctor, copy constructor, destructor, assignment operator
tvector, string, Date
Copy constructor needed to avoid shallow copy
In C++ destructors needed to free resources/self, Java?
Clone makes copy in Java (rare), share is default

Private, protected, public, (package)
Private default in C++, package default in Java
Per method declaration in Java, class sections in C++

Software Design 1.9

Design Criteria
Good design comes from experience, experience comes from bad
design

Fred Brooks (or Henry Petroski)

Design with goals:
ease of use
portability
ease of re-use
efficiency
first to market
?????

Software Design 1.10

How to code
Coding/Implementation goals:

Make it run
Make it right
Make it fast
Make it small

spiral design (or RAD or !waterfall or ...)
what’s the design methodology?

specificationdesign

implementation

Software Design 1.11

XP and Refactoring
(See books by Kent Beck (XP) and Martin Fowler (refactoring))

eXtreme Programming (XP) is an agile design process
Communication: unit tests, pair programming, estimation
Simplicity: what is the simplest approach that works?
Feedback: system and clients; programs and stories
Courage: throw code away, dare to be great/different

Refactoring
Change internal structure without changing observable
behavior
Don’t worry (too much) about upfront design
Simplicity over flexibility (see XP)

Software Design 1.12

Modules, design, coding, refactor, XP
Make it run, make it right, make it fast, make it small
Do the simplest thing that can possibly work (XP)

Design so that refactoring is possible
Don’t lose sight of where you’re going, keep change in
mind, but not as the driving force [it will evolve]

Refactor: functionality doesn’t change, code does
Should mean that new tests aren’t written, just re-run
Depends on modularity of code, testing in pieces

What’s a module in C++
Could be a class, a file, a directory, a library, a namespace
We should, at least, use classes, files, directories

Software Design 1.13

Design Heuristics: class/program/function

(see text by Arthur Riel)
Coupling

classes/modules are independent of each other
goal: minimal, loose coupling
do classes collaborate and/or communicate?

Cohesion
classes/modules capture one abstraction/model
keep things as simple as possible, but no simpler
goal: strong cohesion (avoid kitchen sink)

The open/closed principle
classes/programs: open to extensibility, closed to
modification

Software Design 1.14

C++ idioms/general concepts
Genericity

Templates, STL, containers, algorithms
Copy/Assignment/Memory

Deep copy model, memory management “required”
Low-level structures

C-style arrays and strings compared to STL, Tapestry
const

Good for clients, bad for designers/coders?

From C to C++ to Java
function pointers, function objects, inheritance

Software Design 1.15

Standard Libraries
In C++ there is the Standard Library, formerly known as the
Standard Template Library or STL

Emphasizes generic programming (using templates)
Write a sorting routine, the implementation depends on

• Elements being comparable
• Elements being assignable

We should be able to write a routine not specific to int, string or
any other type, but to a generic type that supports being
comparable/assignable
In C++ a templated function/class is a code-factory, generates
code specific to a type at compile time

Arguably hard to use and unsafe

Software Design 1.16

Eric Raymond
Open source evangelist

The Cathedral and the Bazaar
http://ot.op.org/cathedral-bazaar.html

How to construct software
“Good programmers know what to write.

Great ones know what to rewrite (and
reuse).”
How to convince someone that guns
are a good idea? Put this sign up:

THIS HOME IS A GUN-FREE ZONE

