
Software Design
16.1

Saving and restoring objects
Classes should implement Serializable, this is a tag 
interface, not necessary to implement a function (see 
Cloneable)

mark non-serializable fields as transient
• platform specific objects like font sizes, these need to be 

reconstructed rather than re-read
• fields that aren’t needed when an object is deserialized

use ObjectOutputStream and ObjectInputStream, can 
customize behavior using private?! functions below
private void writeObject(java.io.ObjectOutputStream out) 

throws IOException 
private void readObject(java.io.ObjectInputStream in) 

throws IOException, ClassNotFoundException;
also defaultReadObject() and 
defaultWriteObject()



Software Design
16.2

save and restore/cut and paste
A vector is serializable, what about a vector of figures?

What if Figure extends Component? Is that enough?
Possible to throw NotSerializableException
what about a vector of pages of vectors of figures?

How is a figure saved to the clipboard?
See Harpoon and the class FigureSelection,
note: function classForName, this is part of Java’s 
reflection package, possible to configure program at 
runtime!

How can you select multiple figures and cut/copy/paste 
these?



Software Design
16.3

Aside: ethics of software
What is intellectual property, why is it important?

what about FSF, GPL, copy-left, open source, …
what about money
what about monopolies

What does it mean to act ethically and responsibly?
What is the Unix philosophy? What about protection? What 
about copying? What about stealing? What about 
borrowing?
No harm, no foul? Is this a legitimate philosophy?

The future belongs to software developers/entrepeneurs
what can we do to ensure the world’s a good place to be?



Software Design
16.4

Resources and Internationalization
Your code will run around the world on millions of 
machines, what do you do?

You cannot hardwire literals like “open” (or can you)
You should not hardwire text messages
What about international character sets/Unicode
Locales and Resource bundles can help

ResourceBundles (in java.util)
can provide locale specific constants and objects that 
are used at class-loading time
ListResourceBundle: strings that map to objects
PropertyResourceBundle: (file-based) string 
properties



Software Design
16.5

Resource Bundles
The class PropertyResourceBundle

see Toolbar.properties in Harpoon and DrawGui.java
use static ResourceBundle.getBundle(filename) to 
read
usually use buttons.properties, menu.properties, …

The class ListResourceBundle
associate any objects with strings

public class ProgramResource extends 
ListResourceBundle

{
public Object[][] getContents(){return 

myContents;}
static final Object[][] myContents = {

{“openbutton”, new LoadCommand()},
{“backgroundColor”, Color.red},
{“defaultSize”, new int[]{100,200}} };

}



Software Design
16.6

Resources and Reflection
Resources, e.g., gifs, audiofiles, and classfiles, are searched for 
using the CLASSPATH environment variable

the program can search for resources this way as well 
including gif files, text files, class files, ….
To open a resource, use the Class methods getResource
or the getResourceAsStream which return URL and 
InputStream, respectively --- see DrawGui
class method belongs to a class, not to an object, part of 
meta-object idea, also see java.lang.reflection

Reflection allows program control over classes
can manipulate all the fields/methods of any class
can load a class given the class name, convert from string to 
class and back again



Software Design
16.7

More Reflection
To convert a name to a class use the static Class.forName()
method

Class c = Class.forName(“java.awt.Button”);
what purpose does this have?

See also newInstance() to create instance of a class
To manipulate innards of a class, for construction or for use, see 
Class methods, e.g., getFields(), getMethods(), …

used in Harpoon to load all colors into a menu and to select 
a color --- doesn’t matter if java.awt.Color changes

Useful for loading tools/figures at runtime based on user 
preferences, for example


