Saving and restoring objects

e C(Classes should implement Serializable, this is a tag
interface, not necessary to implement a function (see

Cloneable)
> mark non-serializable fields as transient

* platform specific objects like font sizes, these need to be
reconstructed rather than re-read

* fields that aren’t needed when an object is deserialized
> use ObjectOutputStream and ObjectInputStream, can

customize behavior using private?! functions below

private void writeObject(java.io.ObjectOutputStream out)
throws IOException

private void readObject(java.io.ObjectInputStream in)
throws IOException, ClassNotFoundException;

> also defaultReadObject () and
defaultWriteObject ()

. 16.1
Software Design

save and restore/cut and paste

e A vector is serializable, what about a vector of figures?
> What if Figure extends Component? Is that enough?
> Possible to throw NotSerializableException
> what about a vector of pages of vectors of figures?

e How is a figure saved to the clipboard?
> See Harpoon and the class FigureSelection,

> note: function classForName, this is part of Java’s
reflection package, possible to configure program at
runtime!

e How can you select multiple figures and cut/copy/paste
these?

>
>

. 16.2
Software Design

Aside: ethics of software

e What is intellectual property, why is it important?
> what about FSF, GPL, copy-left, open source, ...
> what about money
> what about monopolies

e What does it mean to act ethically and responsibly?

> What is the Unix philosophy? What about protection? What

about copying? What about stealing? What about
borrowing?

> No harm, no foul? Is this a legitimate philosophy?

e The future belongs to software developers/entrepeneurs
> what can we do to ensure the world’s a good place to be?

. 16.3
Software Design

Resources and Internationalization

e Your code will run around the world on millions of
machines, what do you do?

> You cannot hardwire literals like “open” (or can you)
> You should not hardwire text messages
> What about international character sets/Unicode
> Locales and Resource bundles can help
e ResourceBundles (in java.util)

> can provide locale specific constants and objects that
are used at class-loading time

> ListResourceBundle: strings that map to objects

> PropertyResourceBundle: (file-based) string
properties

. 16.4
Software Design

Resource Bundles

e The class PropertyResourceBundle
> see Toolbar.properties in Harpoon and DrawGui.java

> use static ResourceBundle.getBundle (filename) to
read
> usually use buttons.properties, menu.properties, ...

e The class ListResourceBundle
> associate any objects with strings

public class ProgramResource extends
ListResourceBundle

{
public Object[][] getContents () {return

myContents;}
static final Object[][] myContents = {
{“openbutton”, new LoadCommand()},
{ "backgroundColor”, Color.red},
{“defaultSize”, new int[]{100,200}} 1},

}

Software Design

16.5

Resources and Reflection

e Resources, e.g., gifs, audiofiles, and classfiles, are searched for
using the CLASSPATH environment variable

> the program can search for resources this way as well
including gif files, text files, class files,

> To open a resource, use the Class methods getResource
or the getResourceAsStream which return URL and
InputStream, respectively --- see DrawGui

> class method belongs to a class, not to an object, part of
meta-object idea, also see java.lang.reflection

e Reflection allows program control over classes
> can manipulate all the fields/methods of any class

> can load a class given the class name, convert from string to
class and back again

. 16.6
Software Design

More Reflection

e To convert a name to a class use the static Class. forName ()
method

> Class ¢ =Class.forName (“java.awt.Button”) ;
> what purpose does this have?
>

> See also newInstance () to create instance of a class

e To manipulate innards of a class, for construction or for use, see
Class methods, e.g., getFields () , getMethods (), ...

> used in Harpoon to load all colors into a menu and to select
a color --- doesn’t matter if java.awt.Color changes

e Useful for loading tools/figures at runtime based on user
preferences, for example

. 16.7
Software Design

