
Software Design 2.1

STL concepts
Container: stores objects, supports iteration over the objects

Containers may be accessible in different orders
Containers may support adding/removing elements
e.g., vector, map, set, deque, list, multiset, multimap

Iterator: interface between container and algorithm
Point to objects and move through a range of objects
Many kinds: input, forward, random access, bidirectional
Syntax is pointer like, analagous to (low-level) arrays

Algorithms
find, count, copy, sort, shuffle, reverse, …

Software Design 2.2

Iterator specifics
An iterator is dereferenceable, like a pointer

*it is the object an iterator points to

An iterator accesses half-open ranges, [first..last), it can have a
value of last, but then not dereferenceable

Analagous to built-in arrays as we’ll see, one past end is ok

An iterator can be incremented to move through its range
Past-the-end iterators not incrementable

vector<int> v; for(int k=0; k < 23; k++) v.push_back(k);
vector<int>::iterator it = v.begin();
while (it != v.end()) { cout << *v << endl; v++;}

Software Design 2.3

Design patterns
“... describes a problem which occurs over and over again in our

environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times
over, without ever doing it the same way twice”

Christopher Alexander, quoted in GOF
Name

good name provides a handle for the pattern, builds vocabulary
Problem

when pattern is applicable, context, criteria to be met, design goals
Solution

design, collaborations, responsibilities, and relationships
Forces and Consequences

trade-offs, problems, results from applying pattern: help in
evaluating applicability

Software Design 2.4

Iterator as Pattern
(GOF) Provides access to elements of aggregate object
sequentially without exposing aggregate’s representation

Support multiple traversals
Supply uniform interface for different aggregates: this is
polymorphic iteration (see C++ and Java)

Solution: tightly coupled classes for storing and iterating
Aggregate sometimes creates iterator (Factory pattern)
Iterator knows about aggregate, maintains state

Forces and consequences
Who controls iteration (internal iterator, external iterator)?
Who defines traversal method?
Robust in face of concurrent insertions and deletions?

Software Design 2.5

STL overview
STL implements generic programming in C++

Container classes, e.g., vector, stack, deque, set, map
Algorithms, e.g., search, sort, find, unique, match, …
Iterators: pointers to beginning and one past the end
Function objects: less, greater, comparators

Algorithms and containers decoupled, connected by iterators
Why is decoupling good?
Extensible: create new algorithms, new containers, new
iterators, etc.
Syntax of iterators reflects array/pointer origins, an array
can be used as an iterator

Software Design 2.6

STL examples: wordlines.cpp
How does an iterator work?

Start at beginning, iterate until end: use [first..last) interval
Pointer syntax to access element and make progress

vector<int> v; // push elements
vector<int>::iterator first = v.begin();
vector<int>::iterator last = v.end();
while (first < last) {

cout << *first << endl;
++first;

}
Will the while loop work with an array/pointer?

In practice, iterators aren’t always explicitly defined, but
passed as arguments to other STL functions

Software Design 2.7

Review: what’s a map, a set, a …
Maps keys to values

Insert key/value pair
Extract value given a key, iterate over pairs
STL uses red-black tree, guaranteed O(log n) …
• STL unofficially has a hash_map, see SGI website

Performance and other trade-offs?

A set can be implemented by a map
Stores no duplicates, in STL guaranteed O(log n), why?
STL also has multimap

Software Design 2.8

arrays and strings: what’s a char *?
Why not rely solely on string and vector classes?

how are string and vector implemented?
lower level access can be more efficient (but be leery of
claims that C-style arrays/strings required for efficiency)
real understanding comes when more levels of abstraction
are understood

string and vector classes insulate programmers from
inadvertent attempts to access memory that’s not accessible

what is the value of a pointer?
what is a segmentation violation?

Software Design 2.9

Contiguous chunks of memory
In C++ allocate using array form
of new

int * a = new int[100];
double * b = new double[300];

new [] returns a pointer to a
block of memory

how big? where?
size of chunk can be set at
runtime, not the case with
int a[100];
cin >> howBig;
int a[howBig];

delete [] a; // storage returned

int * a = new int[100];

0 1 9932 33 98

a is a pointer
*a is an int
a[0] is an int (same as *a)
a[1] is an int
a+1 is a pointer
a+32 is a pointer
*(a+1) is an int (same as a[1])
*(a+99) is an int
*(a+100) is trouble
a+100 is valid for comparison

of pointer values

Software Design 2.10

C-style contiguous chunks of memory
In C, malloc is used to allocate
memory

int * a = (int *)
malloc(100 * sizeof(int));

double * d = (double *)
malloc(200 * sizeof(double));

malloc must be cast, is NOT type-
safe (returns void *)

void * is ‘generic’ type, can be
cast to any pointer type

free(d); // return storage
We WILL NOT USE malloc/free

int * a = (int *)
malloc(100*sizeof(int));

0 1 9932 33 98

a is a pointer
*a is an int
a[0] is an int (same as *a)
a[1] is an int
a+1 is a pointer
a+32 is a pointer
*(a+1) is an int (same as a[1])
*(a+99) is an int
*(a+100) is trouble
a+100 is valid for comparison

Software Design 2.11

Address calculations, what is sizeof(…)?
x is a pointer, what is x+33?

a pointer, but where?
what does calculation
depend on?

result of adding an int to a
pointer depends on size of
object pointed to

result of subtracting two
pointers is an int:

(d + 3) - d == _______

int * a = new int[100];

0 1 9932 33 98

a[33] is the same as *(a+33)
if a is 0x00a0, then a+1 is
0x00a4, a+2 is 0x00a8
(think 160, 164, 168)

0 1 33 199

double * d = new double[200];

*(d+33) is the same as d[33]
if d is 0x00b0, then d+1 is
0x00b8, d+2 is 0x00c0
(think 176, 184, 192)

Software Design 2.12

More pointer arithmetic
address one past the end of an
array is ok for pointer
comparison only

what about *(begin+44)?

what does begin++ mean?

how are pointers compared
using < and using == ?

what is value of end - begin?

char * a = new char[44];
char * begin = a;
char * end = a + 44;

while (begin < end)
{

*begin = ‘z’;
begin++; // *begin++ = ‘z’

}

0 1 4315 16 42

Software Design 2.13

What is a C-style string?
array of char terminated by sentinel ‘\0’ char

sentinel char facilitates string functions
‘\0’ is nul char, unfortunate terminology
how big an array is needed for string “hello”?

a string is a pointer to the first character just as an array is a
pointer to the first element

char * s = new char[6];
what is the value of s? of s[0]?

char * string functions in <string.h>

Software Design 2.14

C style strings/string functions
strlen is the # of characters in a
string

same as # elements in char
array?

int strlen(char * s)
// pre: ‘\0’ terminated
// post: returns # chars
{

int count=0;
while (*s++) count++;
return count;

}
Are these less cryptic?

while (s[count]) count++;
// OR, is this right?
char * t = s;
while (*t++);
return t-s;

what’s “wrong” with this code?

int countQs(char * s)
// pre: ‘\0’ terminated
// post: returns # q’s
{

int count=0;
for(k=0;k < strlen(s);k++)

if (s[k]==‘q’) count++;
return count;

}

how many chars examined for
10 character string?
solution?

Software Design 2.15

<string.h> aka <cstring> functions
strcpy copies strings

who supplies storage?
what’s wrong with s = t?

char s[5];
char t[6];
char * h = “hello”;
strcpy(s,h); // trouble!
strcpy(t,h); // ok
char * strcpy(char* t,char* s)
//pre: t, target, has space
//post: copies s to t,returns t
{

int k=0;
while (t[k] = s[k]) k++;
return t;

}
strncpy copies n chars (safer?)

what about relational operators
<, ==, etc.?
can’t overload operators for
pointers, no overloaded
operators in C
strcmp (also strncmp)

return 0 if equal
return neg if lhs < rhs
return pos if lhs > rhs

if (strcmp(s,t)==0) // equal
if (strcmp(s,t) < 0)// less
if (strcmp(s,t) > 0)// ????

Software Design 2.16

Arrays and pointers
These definitions are related, but not the same
int a[100];
int * ap = new int[10];
both a and ap represent ‘arrays’, but ap is an lvalue

arrays converted to pointers for function calls:
char s[] = “hello”;
// prototype: int strlen(char * sp);
cout << strlen(s) << endl;
multidimensional arrays and arrays of arrays
int a[20][5];
int * b[10]; for(k=0; k < 10; k++) b[k] = new int[30];

