
Software Design 4.1

Patterns as solutions to problems
A design pattern is the solution to a problem in a context

Has a name that helps in remembering/understanding
Has forces that describe the situations in which applicable
• Should supply pros/cons in using the pattern

Has a description that summarizes purpose

Adapter
You have a class that’s close to what you want, but the
interface isn’t quite right, or some functionality is missing
Use an adapter, adapt the existing class to a new interface
Also known as wrapper, similar to Proxy but changes
interface/adds functionality

Software Design 4.2

Decorator
Add responsibility to object dynamically, flexible
alternative to subclassing for adding functionality

Add responsibility to objects without affecting other
objects (transparently)
Remove responsibilities
Extension by subclass impractical (subclass explosion)

Component is the base class
Decorator is a component that contains a component
Used "as-a" component, decorates and forwards

Software Design 4.3

Inheritance and STL in OOLS
Sorter (Comparer) and Filter objects

Appear to use inheritance, virtual operator ()
In STL inheritance rarely (never?) works
• Template parameters don't support inheritance
• Objects often copied/passed-by-value

Solution? Use base-class through decoration by subclass
Base class maintains pointer to "real" sorter
Base class function always used, forwards to virtual

Look at Filter and Sorter base class implementations
How does storing this work?

Software Design 4.4

getopt_long details
#include <getopt.h> works in Eclipse, but requires
header file on Unix system

Implementation linked in by –liberty (libiberty.a)
In Eclipse part of standard g++/mingw libraries

See oolsmain.cpp for details on initializing structures and
calling function to process options

Notice requirement for short args, could be generated
automatically (see header file for struct option)

Switch statement is frought with peril, but liveable
Alternative, map to commands

