
1

SQL: Part I

CompSci 316

Introduction to Database Systems

2

Announcements (Tue. Sep. 17)

� Homework #1 due midnight tonight

� Homework #2 assigned

3

SQL

� SQL: Structured Query Language
� Pronounced “S-Q-L” or “sequel”
� The standard query language supported by most

commercial DBMS

� A brief history
� IBM System R
� ANSI SQL89
� ANSI SQL92 (SQL2)
� ANSI SQL99 (SQL3)
� ANSI SQL 2003 (added OLAP, XML, etc.)
� ANSI SQL 2006 (added more XML)
� ANSI SQL 2008, …

4

Creating and dropping tables

� CREATE TABLE �����_����
(…, 	
����_����� 	
����_�
���, …);

� DROP TABLE �����_����;

� Examples
create table Student (SID integer,

name varchar(30), email varchar(30),
age integer, GPA float);

create table Course (CID char(10), title varchar(100));

create table Enroll (SID integer, CID char(10));

drop table Student;

drop table Course;

drop table Enroll;

-- everything from -- to the end of the line is ignored.

-- SQL is insensitive to white space.

-- SQL is insensitive to case (e.g., ...Course... is equivalent to

-- ...COURSE...)

5

Basic queries: SFW statement

� SELECT ��, ��, …, ��
FROM ��, ��, …, ��
WHERE 	
�����
�;

� Also called an SPJ (select-project-join) query

� Corresponds to (but not really equivalent to)
relational algebra query:

���,��,…,�� �� �!�"� � �� × �� ×⋯× ��

6

Example: reading a table

� SELECT * FROM Student;

� Single-table query, so no cross product here

� WHERE clause is optional

� * is a short hand for “all columns”

2

7

Example: selection and projection

� Name of students under 18

� SELECT name FROM Student WHERE age < 18;

� When was Lisa born?

� SELECT 2013 – age

FROM Student

WHERE name = ’Lisa’;

� SELECT list can contain expressions

• Can also use built-in functions such as SUBSTR, ABS, etc.

� String literals (case sensitive) are enclosed in single
quotes

8

Example: join

� SID’s and names of students taking courses with the
word “Database” in their titles

� SELECT Student.SID, Student.name

FROM Student, Enroll, Course

WHERE Student.SID = Enroll.SID

AND Enroll.CID = Course.CID

AND title LIKE ’%Database%’;

� LIKE matches a string against a pattern

• % matches any sequence of 0 or more characters

� Okay to omit �����_���� in �����_����.	
����_����
if 	
����_���� is unique

9

Example: rename

� SID’s of all pairs of classmates

� Relational algebra query:
�%�.'(),%�.'()

*%�+�,
�� ⋈%�..()/%�..()	∧	%�.'()2%�.'()
*%�+�,
��

� SQL:
SELECT e1.SID AS SID1, e2.SID AS SID2

FROM Enroll AS e1, Enroll AS e2

WHERE e1.CID = e2.CID

AND e1.SID > e2.SID;

� AS keyword is completely optional

10

A more complicated example

� Titles of all courses that Bart and Lisa are taking
together

Tip: Write the FROM clause first, then WHERE, and then SELECT

FROM Student sb, Student sl, Enroll eb, Enroll el, Course c

WHERE sb.name = ’Bart’ AND sl.name = ’Lisa’

AND eb.SID = sb.SID AND el.SID = sl.SID

AND eb.CID = c.CID AND el.CID = c.CID;

SELECT c.title

11

Why SFW statements?

� Out of many possible ways of structuring SQL
statements, why did the designers choose SELECT-
FROM-WHERE?

� A large number of queries can be written using only
selection, projection, and cross product (or join)

� Any query that uses only these operators can be written

in a canonical form: �3 �4 �� ×⋯× ��

• Example: �5.�,'.6 � ⋈4�
7 ⋈4�

�8..�49:

= �5.�,'.6,8..�4�∧4�∧49 � × 7 × :

� SELECT-FROM-WHERE captures this canonical form

12

Set versus bag semantics

� Set

� No duplicates

� Relational model and algebra use set semantics

� Bag

� Duplicates allowed

� Number of duplicates is significant

� SQL uses bag semantics by default

3

13

Set versus bag example

�'()+�,
��

+�,
��

SELECT SID

FROM Enroll;

SID CID

142 CPS316

142 CPS310

123 CPS316

857 CPS316

857 CPS330

456 CPS310

… …

SID

142

123

857

456

…

SID

142

142

123

857

857

456

…

14

A case for bag semantics

� Efficiency

� Saves time of eliminating duplicates

� Which one is more useful?

� �<=�7������

� SELECT GPA FROM Student;

� The first query just returns all possible GPA’s

� The second query returns the actual GPA distribution

� Besides, SQL provides the option of set semantics
with DISTINCT keyword

15

Forcing set semantics

� SID’s of all pairs of classmates
� SELECT e1.SID AS SID1, e2.SID AS SID2

FROM Enroll AS e1, Enroll AS e2

WHERE e1.CID = e2.CID

AND e1.SID > e2.SID;

• Say Bart and Lisa both take CPS316 and CPS310

� SELECT DISTINCT e1.SID AS SID1, e2.SID AS SID2

...

• With DISTINCT, all duplicate (SID1, SID2) pairs are removed
from the output

16

Operational semantics of SFW

� SELECT [DISTINCT] +�, +�, …, +�
FROM ��, ��, …, ��
WHERE 	
�����
�;

� For each �� in ��:
For each �� in ��: … …

For each �� in ��:
If 	
�����
� is true over ��, ��, …, ��:

Compute and output +�, +�, …, +� as a row
If DISTINCT is present

Eliminate duplicate rows in output

� ��, ��, …, �� are often called tuple variables

17

SQL set and bag operations

� UNION, EXCEPT, INTERSECT
� Set semantics

• Duplicates in input tables, if any, are first eliminated
• Duplicates in result are also eliminated (for UNION)

� Exactly like set ∪, −, and ∩ in relational algebra

� UNION ALL, EXCEPT ALL, INTERSECT ALL
� Bag semantics
� Think of each row as having an implicit count (the

number of times it appears in the table)
� Bag union: sum up the counts from two tables
� Bag difference: proper-subtract the two counts
� Bag intersection: take the minimum of the two counts

18

Examples of bag operations

Bag1 Bag2

Bag1 UNION ALL Bag2

Bag1 EXCEPT ALL Bag2

Bag1 INTERSECT ALL Bag2

fruit

apple

apple

orange

fruit

apple

orange

orange

fruit

apple

apple

orange

apple

orange

orange

fruit

apple

fruit

apple

orange

4

19

Examples of set versus bag operations

� Enroll(SID, CID), ClubMember(club, SID)

� (SELECT SID FROM ClubMember)

EXCEPT

(SELECT SID FROM Enroll);

• SID’s of students who are in clubs but not taking any classes

� (SELECT SID FROM ClubMember)

EXCEPT ALL

(SELECT SID FROM Enroll);

• SID’s of students who are in more clubs than classes

20

Summary of SQL features covered so far

� SELECT-FROM-WHERE statements (select-project-join
queries)

� Set and bag operations

�Next: how to nest SQL queries

21

Table expression

� Use query result as a table

� In set and bag operations, FROM clauses, etc.

� A way to “nest” queries

� Example: names of students who are in more clubs
than classes

(SELECT SID FROM ClubMember)
EXCEPT ALL
(SELECT SID FROM Enroll)

SELECT DISTINCT name
FROM Student,

(

) AS S
WHERE Student.SID = S.SID;

22

Scalar subqueries

� A query that returns a single row can be used as a value in
WHERE, SELECT, etc.

� Example: students at the same age as Bart

SELECT *

FROM Student

WHERE age = (

);

SELECT age

FROM Student

WHERE name = ’Bart’

What’s Bart’s age?

� Runtime error if subquery returns more than one row
� Under what condition will this runtime error never occur?

• name is a key of Student

� What if subquery returns no rows?
� The return value is treated as a special value NULL, and the comparison fails

� Can also be used in SELECT to compute a value for an output column

23

IN subqueries

� A IN (B��C��,
) checks if A is in the result of
B��C��,

� Example: students at the same age as (some) Bart

SELECT *

FROM Student

WHERE age IN (

);

SELECT age

FROM Student

WHERE name = ’Bart’

What’s Bart’s age?

24

EXISTS subqueries

� EXISTS (B��C��,
) checks if the result of
B��C��,
 is non-empty

� Example: students at the same age as (some) Bart
� SELECT *

FROM Student AS s

WHERE EXISTS (SELECT * FROM Student

WHERE name = ’Bart’

AND age = s.age);

� This happens to be a correlated subquery—a subquery
that references tuple variables in surrounding queries

5

25

Operational semantics of subqueries

� SELECT *

FROM Student AS s

WHERE EXISTS (SELECT * FROM Student

WHERE name = ’Bart’

AND age = s.age);

� For each row s in Student

� Evaluate the subquery with the appropriate value of s.age

� If the result of the subquery is not empty, output s.*

� The DBMS query optimizer may choose to process the
query in an equivalent, but more efficient way (example?)

26

Scoping rule of subqueries

� To find out which table a column belongs to

� Start with the immediately surrounding query

� If not found, look in the one surrounding that; repeat if
necessary

� Use �����_����.	
����_���� notation and AS
(renaming) to avoid confusion

27

Another example

SELECT * FROM Student s

WHERE EXISTS

(SELECT * FROM Enroll e

WHERE SID = s.SID

AND EXISTS

(SELECT * FROM Enroll

WHERE SID = s.SID

AND CID <> e.CID));

Students who are taking at least two courses

28

Quantified subqueries

� A quantified subquery can be used as a value in a WHERE
condition

� Universal quantification (for all):
… WHERE A
� ALL (B��C��,
) …

� True iff for all � in the result of B��C��,
, A	
�	�

� Existential quantification (exists):
… WHERE A
� ANY (B��C��,
) …

� True iff there exists some � in B��C��,
 result such that A	
�	�

�Beware
• In common parlance, “any” and “all” seem to be synonyms

• In SQL, ANY really means “some”

29

Examples of quantified subqueries

� Which students have the highest GPA?

� SELECT *

FROM Student

WHERE GPA >= ALL

(SELECT GPA FROM Student);

� SELECT *

FROM Student

WHERE NOT

(GPA < ANY (SELECT GPA FROM Student);

�Use NOT to negate a condition

30

More ways of getting the highest GPA

� Which students have the highest GPA?

� SELECT *

FROM Student AS s

WHERE NOT EXISTS

(SELECT * FROM Student

WHERE GPA > s.GPA);

� SELECT * FROM Student

WHERE SID NOT IN

(SELECT s1.SID

FROM Student AS s1, Student AS s2

WHERE s1.GPA < s2.GPA);

6

31

Summary of SQL features covered so far

� SELECT-FROM-WHERE statements

� Set and bag operations

� Table expressions, subqueries

� Subqueries allow queries to be written in more
declarative ways (recall the highest GPA query)

� But they do not add much expressive power
• Try translating other forms of subqueries into [NOT] EXISTS,

which in turn can be translated into join (and difference)

�Next: aggregation and grouping

32

Aggregates

� Standard SQL aggregate functions: COUNT, SUM,
AVG, MIN, MAX

� Example: number of students under 18, and their
average GPA

� SELECT COUNT(*), AVG(GPA)

FROM Student

WHERE age < 18;

� COUNT(*) counts the number of rows

33

Aggregates with DISTINCT

� Example: How many students are taking classes?

� SELECT COUNT(DISTINCT SID)

FROM Enroll;

is equivalent to:

� SELECT COUNT(*)

FROM (SELECT DISTINCT SID FROM Enroll);

34

GROUP BY

� SELECT … FROM … WHERE …
GROUP BY ��B�_
D_	
����B;

� Example: find the average GPA for each age group

� SELECT age, AVG(GPA)

FROM Student

GROUP BY age;

35

Operational semantics of GROUP BY

SELECT … FROM … WHERE … GROUP BY …;

� Compute FROM (×)

� Compute WHERE (�)

� Compute GROUP BY: group rows according to the
values of GROUP BY columns

� Compute SELECT for each group (�)
� For aggregation functions with DISTINCT inputs, first

eliminate duplicates within the group

�Number of groups = number of rows in the final
output

36

Example of computing GROUP BY

SELECT age, AVG(GPA) FROM Student GROUP BY age;

Compute GROUP BY: group
rows according to the values
of GROUP BY columns

Compute SELECT for each group

SID name age GPA

142 Bart 10 2.3

123 Milhouse 10 3.1

857 Lisa 8 4.3

456 Ralph 8 2.3

… … … …

SID name age GPA

142 Bart 10 2.3

857 Lisa 8 4.3

123 Milhouse 10 3.1

456 Ralph 8 2.3

… … … …

age AVG GPA

10 2.7

8 3.3

… …

7

37

Aggregates with no GROUP BY

� An aggregate query with no GROUP BY clause
represent a special case where all rows go into one
group

SELECT AVG(GPA) FROM Student;

Group all rows
into one group

Compute aggregate
over the group

SID name age GPA

142 Bart 10 2.3

857 Lisa 8 4.3

123 Milhouse 10 3.1

456 Ralph 8 2.3

… … … …

SID name age GPA

142 Bart 10 2.3

857 Lisa 8 4.3

123 Milhouse 10 3.1

456 Ralph 8 2.3

… … … …

AVG GPA

3

38

Restriction on SELECT

� If a query uses aggregation/group by, then every
column referenced in SELECT must be either

� Aggregated, or

� A GROUP BY column

�This restriction ensures that any SELECT expression
produces only one value for each group

39

Examples of invalid queries

� SELECT SID, age FROM Student GROUP BY age;

� Recall there is one output row per group

� There can be multiple SID values per group

� SELECT SID, MAX(GPA) FROM Student;

� Recall there is only one group for an aggregate query
with no GROUP BY clause

� There can be multiple SID values

� Wishful thinking (that the output SID value is the one
associated with the highest GPA) does NOT work

�Another way of writing the max GPA query?

40

HAVING

� Used to filter groups based on the group properties
(e.g., aggregate values, GROUP BY column values)

� SELECT … FROM … WHERE … GROUP BY …
HAVING 	
�����
�;

� Compute FROM (×)

� Compute WHERE (�)

� Compute GROUP BY: group rows according to the values
of GROUP BY columns

� Compute HAVING (another � over the groups)

� Compute SELECT (�) for each group that passes HAVING

41

HAVING examples

� Find the average GPA for each age group over 10
� SELECT age, AVG(GPA)
FROM Student
GROUP BY age
HAVING age > 10;

� Can be written using WHERE without table expressions

� List the average GPA for each age group with more than a
hundred students
� SELECT age, AVG(GPA)
FROM Student
GROUP BY age
HAVING COUNT(*) > 100;

� Can be written using WHERE and table expressions

42

Summary of SQL features covered so far

� SELECT-FROM-WHERE statements

� Set and bag operations

� Table expressions, subqueries

� Aggregation and grouping

� More expressive power than relational algebra

�Next: ordering output rows

8

43

ORDER BY

� SELECT [DISTINCT] ...
FROM … WHERE … GROUP BY … HAVING …
ORDER BY
�����_	
���� [ASC | DESC], …;

� ASC = ascending, DESC = descending

� Operational semantics

� After SELECT list has been computed and optional
duplicate elimination has been carried out,
sort the output according to ORDER BY specification

44

ORDER BY example

� List all students, sort them by GPA (descending)
and name (ascending)

� SELECT SID, name, age, GPA

FROM Student

ORDER BY GPA DESC, name;

� ASC is the default option

� Strictly speaking, only output columns can appear in
ORDER BY clause (although some DBMS support more)

� Can use sequence numbers instead of names to refer to
output columns: ORDER BY 4 DESC, 2;

45

Summary of SQL features covered so far

� SELECT-FROM-WHERE statements

� Set and bag operations

� Table expressions, subqueries

� Aggregation and grouping

� Ordering

�Next: NULL’s, outerjoins, data modification,
constraints, …

