
ICT219 1

Topic 4

Knowledge representation, rule-

based systems

Steering around obstacles

Knowledge Representation

Rule-Based Systems

Synthesising Movement with an RBS

Reading: Champandard Chapters 9 -12

Links to RBS, Knowledge Representation on website



ICT219 2

More on Obstacle Avoidance

• Continuing to develop our obstacle-avoidance code, Champandard uses

the concept of steering behaviours (Reynolds, 1999)

• Assume an animat which can move (using a locomotion layer). Assume

a physics system which has friction and obeys Newtonian laws of

motion

• The velocity of an animat is crucial. Recall that velocity is a vector,

meaning it has both magnitude and direction.  A steering force is also a

vector, which when added to the animat’s existing velocity, will change

its speed and direction.

• We continually compute new steering forces to control movement

existing motion

steering force

resulting motion



ICT219 3

Steering, seeking and fleeing

• Velocities and steering forces are both limited at some max value

truncate(steering_force, MAX_STEERING_FORCE) //cap force to max

velocity = velocity + steering_force; // accumulate vectors to get new vel

truncate(velocity, MAX_VELOCITY) //cap animat speed to max

Motion->move(velocity) //use interface to locomotion layer to apply the new vel

• This can be the basis of other behaviours such as seeking, or moving to

a target: compute a steering force that turns an animat toward some

target.

• The desired force is computed from the distance and bearing to the

target and relative to the existing velocity of the animat

• It is well to slow the animat down as it approaches a target because

at maximum velocity it will overshoot and oscillate

• Fleeing behaviour may be computed by simply negating the seeking

vector, so that the direction of travel is away from the target

existing motion

steering force

resulting motion



ICT219 4

A Basic Obstacle-Avoidance Algorithm
function avoid_obstacles2

  check the Vision senses for free space in front, left and right

  if a frontal collision is projected (using Tracewalk)

 find the furthest obstacle on left or right

 determine the best side to turn towards

 compute the desired turn to seek the free space

  endif

  if the front obstacle is within a threshold distance

 proportionally determine a breaking force (slow down or stop)

  endif

  if there is an obstacle on the left side

  proportionally adjust the steering force to step right

  endif

  if there is an obstacle on the right side

  proportionally adjust the steering force to step left

  endif

  apply steering and breaking forces

end function avoid_obstacles2



ICT219 5

Knowledge Representation - Basics

• In AI (and human) problem-solving, it matters a great deal how a

problem is represented. Knowledge representation is the question of

how human knowledge can be encoded into a form that can be handled

by computer algorithms and heuristics

• Knowledge representation languages have been developed to try to

make representations as expressive, consistent, complete and

extensible as possible

• An ideal representation would

 - involve a good theory of intelligent reasoning

      - provide symbols that served as adequate surrogates for objects,

     events etc in the world

      - make ontological commitments (about what objects exist, and how to

   classify them)

 - provide data structures which can be efficiently computed

 - provide  data structures which human beings can express all kinds

   of knowledge



ICT219 6

Knowledge Representation - Basics

• We have already discussed one KR issue – whether knowledge should

be encoded declaratively or procedurally (almost certainly need both)

• The notation of a KR is the symbols and syntax – what is written down

• The denotation is the semantics, what the symbols refer to, or what you

can do with them

• In most KR, knowledge is a mixture of explicitly represented notation,

and implicit knowledge available via inference

• There are a lot of unanswered questions about how to gather, organise,

store and use knowledge-bearing data structures

• There is also a lot of research devoted to the processes (algorithms or

heuristics) by which knowledge-bearing data structures can be

manipulated



ICT219 7

Formalisms

• Symbols – we already use representations in basic programming

left_obstacle_distance = 4.0; // distance to left obstacle is 4 units

left_obstacle_colour = ‘’blue’’; // colour blob there is in the blue

left_obstacle_identity = ‘’unknown’’; // nothing from the recogniser though

right_obstacle_distance = 12.0; // distance to left obstacle is 4 units

• Object-attribute-value To avoid the need to create many objects,

     attributes are represented as functions with two parameters: A(o,v)

distance (left_obstacle, 4.0);

distance (right_obstacle,12.0);

colour (left_obstacle, blue);

• More natural since most attributes would be fetched from the world by a

function



ICT219 8

Formalisms
• Frames – are a labelled package of slots, each with a value. The values

might be pointers to other frames, or actors, which may launch

procedural code

frame_left_obstacle:

distance:  (4.0)

  colour:  (blue)

identity:  (frame_fountain)

         on_proximity:  <avoid_right 50.0f>

• Semantic Networks – graphs with nodes representing entities linked by

arbitrary relationships

Tweety

Bird

Living_Thing

Perch Cage Door

Container

Inanimate

is-a

is-a

has-part has-partsupported-by

is-a

is-a

Yellow
colour



ICT219 9

Formalisms

• Conceptual Graphs – more compact and flexible than semantic

networks. Relationships get the status of nodes, and is-a links are made

implicit

PIE

    GIRL:Sue AGNT EAT MANR FAST

OBJ

• The graphs are suited to the expression of commonsense notions. The

above graph represents the deep meaning underlying the sentence

     “Sue is quickly eating a pie.”

• Conceptual graphs can also have actors, like frames

• Such graphs can be manipulated according to canonical truth-

preserving algorithms. These operations allow reasoning to carried out

in terms of the graphs



ICT219 10

Formalisms• Rules – antecedent clause (condition) related to a consequent clause

(action) by implication

                                         if (A and B) THEN S1

• Antecedent clause is a boolean expression (possibly containing AND

OR and NOT).  Consequent clause can be any assertion or function call

• Fuzzy rules – rules containing fuzzy logic terms (see later)

• Subsymbolic patterns - eg networks with numerically weighted links

• None! eg sensori-motor behaviours reacting directly to the world

Formalisms

eg. Bayesian 

      network



ICT219 11

Knowledge Engineering

• Specification procedure – effort to pin down a rather scruffy kind of

knowledge engineering suitable for novelle game AI

• Sketching – informally draft some ideas about how to encode the

important data structures and methods. Input (which inputs are

available, which are needed, in what form?), output (what primitive

motor actions are needed?) and context (what goes on behind the

interfaces, what variables are involved, how can things be simplified?).

• Formalising – the rough design is refined towards a formal specification

for programming ie properly documented

• Rationalising - The representations are tested for consistency, so that

the parts will interoperate, with each other and with existing machinery

• This processes is very creative and may loop back (like the Software

Development Life Cycle)



ICT219 12

Rule Based Systems - Basics

• This is a real success story of AI – tens of thousands of working

systems deployed into many aspects of life

• Terms: a knowledge-based systems are really anything that stores and

uses explicit knowledge (at first, only RBSs, later other kinds of system);

a rule-base system (or production system) is a KBS in which the

knowledge is stored as rules; an expert system is a RBSs in which the

rules come from human experts in a particular domain

• Can be used for problem-solving, or for control (eg of animat motion)

• In an RBS, the knowledge is separated from the AI reasoning

processes, which means that new RBSs are easy to create

• An RBS can be fast, flexible, and easy to expand



ICT219 13

RBS Components

• Working memory – a small allocation of memory into which only

appropriate rules are copied

• Rulebase – the rules themselves, possibly stored specially to facilitate

efficient access to the antecedent

• Interpreter – The processing engine which carries out reasoning on the

rules and derives an answer

• An expert system will likely also have an Explanation Facility - keeps

track of the chain of reasoning leading to the current answer.  This can

be queried for an explanation of how the answer was deduced.

• Thus unlike many other problem-solving AI modules, an expert system

does not have to be a “black box” ie it can be transparent about how it

arrives at answers



ICT219 14

Rule Based Systems - Architecture

EXPLANATION

FACILITY

Keeps a trace of chain of rules 

for the current solution
optionally



ICT219 15

Rule Based Systems – Forward Chaining

• To reason by forward chaining, the interpreter follows a recognise-act

cycle which begins from a set of initial assertions (input states set in the

working memory) and repeatedly applies rules until it arrives at a

solution (data driven processing)

• Match – identify all rules whose antecedent clauses match the initial

assertions

• Conflict resolution – if more than one rule matches, choose one

• Execution – the consequent clause of the chosen rule is applied, usually

updating the state of working memory, finally generating output



ICT219 16

Rule Based Systems - Backward Chaining

• In backward chaining, the interpreter begins from a known goal state

and tries to find a logically supported path back to one of the initial

assertions (goal-directed inference)

• Match – identify all rules whose consequent clauses match the working

memory state (initially the hypothesised goal state)

• Conflict resolution – if more than one rule matches, choose one

• Execution – the state of working memory is updated to reflect the

antecedent clause of the matched rule

en D



ICT219 17

Rule Based Systems – Conflict Resolution

• The interpreter must choose one path to examine at a time, and so

    needs a method of conflict resolution in case of multiple rules

• Methods include:

   - first come, gets served: choose the first rule that applies

   - rules are ordered into priorities (by expert): choose the highest rank

   - most specific rule is chosen: eg, apply the rule with most elements in

     antecedent

   - choose a rule at random, and use that

   - keep a historical trace, and allow this to chose a different rule next

     time

• If the first chosen rule leads to a dead end, it should be possible to try

    another, provided a trace is kept

• Note that this is another example of search through a graph of

    possibilities



ICT219 18

Rule Based Systems - Development

Explanation

Facility

• The process of encoding human knowledge into an expert system is

   called knowledge elicitation

• It can be quite difficult to elicit expert knowledge from experts

 - they might not know how they know

 - they are very busy people – can’t get their attention for long

- some knowledge might be difficult to codify as rules

- different experts might disagree on facts and methods

- facts and methods may change => need to maintain the system

• Programmer may customise an expert system shell



ICT219 19

Synthesising Movement with an RBS

• Champandard describes a RBS system which implements wall-

   following behaviour:

 1. If no wall is present and the animat was not already following one,

       move forward by a random amount

 2. If a wall ahead is detected, the animat should turn away, neglecting any

       following of a wall at the side

 3. If there is a wall to the side and not at the front, it should be followed by

       moving forward

 4. If no wall is present and one was being followed, the animat should turn

        towards the side where the wall was last detected

• 1 and 4 are similar, but depend on what the animat has been doing,

   thus a purely reactive agent cannot generate this behaviour

• However, an RBS can; just use an internal symbol to remember what

   the animat has been doing

• In a control forward chaining used rather than backward chaining

  (why?)



ICT219 20

How to Declare the Rulebase

• The contents of the working memory and the rulebase is defined in XML

<memory>

   <Symbol name="sideWall" />

   <Symbol name="turnTowards" value="false" />

   ......

   ......

</memory>

<rulebase>

<Rule>

  <conditions>

       <Symbol name="following" value="false" ground=“true”/>

       <Symbol name="frontWall" value="false" />

       <Symbol name="sideWall" value="false" />

   </conditions>

   <actions>

        <Symbol name="following" value="false" />

    </actions>

 </Rule>

  ........

  ........

  ... other rules...

  ........

</rulebase>

} working memory, set values, defaults 

} rule base, condition-action pairs

conjunction (AND) between clauses

is implicit

more than one action is allowed

default values are called ‘ground’



ICT219 21

How to Use the Rulebase Interface

• Native symbols must be synchronised so as to relay input from sensors

   into the RBS system at runtime

• Register a variable declared in the working memory XML by

  SetSensor( &SensorSideWall, ‘’sideWall’’); //&Sensor.. is pointer to C++ var

• This variable is now synchronised with the one in the working memory

• We can use Get and Set accessor methods to fetch and change the

   values in working memory:

     void Set (const string& symbol, const bool value ); //sets a native var

  bool Get (const string& symbol) const;// returns boolean state of the var

• Actions are implemented as functors (classes that store functions).

  Each action can then be a method in the same class. The C++ native

  variables can also be included for convenience.

• You can even add rules dynamically – not recommended to begin with!



ICT219 22

How the RBS Simulator Works
• FEAR has a RBS simulator in the ‘modules’ directory

• The working memory and rulebase set up with appropriate XML

• Needs native functions linked to sensors and effectors

•  Interpreter (used for animat control) cycles through these steps:

1. Update working memory variables from inputs using CheckSensors();

 2. Scans rules (top to bottom), looking for a match using ApplyRules().

    Rules that do not match are skipped. If all rules match, the defaults are

    applied, then overridden by rule specifications. If no matches are found,

    the default values are applied.

3. Effector symbols are scanned by CheckEffectors(), and native function

    calls are made if any are true.

• Calling the function Tick() executes one such cycle

• Once the system has been set up, most of the modifications can be

done by just modifying the rules (provided they don’t need new

sensors and effectors)



ICT219 23

Back into Quake 2

• The Stalker demonstration animat uses these methods to implement

   wall-following

• Study this carefully in the laboratory this week, using Chapter 12 as

   your guide


