

Lecture 7: Linear Time Selection

(CLRS 9)

September 16, 2003

1 Quick-Sort Review

- The last two lectures we have considered Quick-Sort:
 - Divide $A[1..n]$ (using PARTITION) into subarrays $A' = A[1..q - 1]$ and $A'' = A[q + 1..n]$ such that all elements in A'' are larger than $A[q]$ and all elements in A' are smaller than $A[q]$.
 - Recursively sort A' and A'' .
- We discussed how split point q produced by PARTITION only depends on last element in A
- We discussed how randomization can be used to get good expected partition point.
- Analysis:
 - Best case ($q = n/2$): $T(n) = 2T(n/2) + \Theta(n) \Rightarrow T(n) = \Theta(n \log n)$.
 - Worst case ($q = 1$): $T(n) = T(1) + T(n - 1) + \Theta(n) \Rightarrow T(n) = \Theta(n^2)$.
 - Expected case for randomized algorithm: $\Theta(n \log n)$

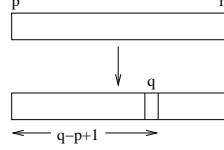
2 Selection

- If we could find element e such that $rank(e) = n/2$ (the *median*) in $O(n)$ time we could make quick-sort run in $\Theta(n \log n)$ time worst case.
 - We could just exchange e with last element in A in beginning of PARTITION and thus make sure that A is always partition in the middle
- We will consider a more general problem than finding the median:
 - Selection problem: Compute $\text{SELECT}(i)$
 - $\text{SELECT}(i)$ is the i 'th element in the sorted order of elements
 - Note: We do not require that we sort to find $\text{SELECT}(i)$
 - Note: $\text{SELECT}(1)$ =minimum, $\text{SELECT}(n)$ =maximum, $\text{SELECT}(n/2)$ =median

- Special cases of $\text{SELECT}(i)$
 - Minimum or maximum can easily be found in $n - 1$ comparisons
 - * Scan through elements maintaining minimum/maximum
 - Second largest/smallest element can be found in $(n - 1) + (n - 2) = 2n - 3$ comparisons
 - * Find and remove minimum/maximum
 - * Find minimum/maximum
 - Median:
 - * Using the above idea repeatedly we can find the median in time $\sum_{i=1}^{n/2} (n - i) = n^2/2 - \sum_{i=1}^{n/2} i = n^2/2 - (n/2 \cdot (n/2 + 1))/2 = \Theta(n^2)$
 - * We can easily design $\Theta(n \log n)$ algorithm using sorting
- Can we design $O(n)$ time algorithm for general i ?
- If we could partition nicely (which is what we are really trying to do) we could solve the problem
 - by partitioning and then recursively looking for the element in one of the partitions:

```
SELECT( $A, p, r, i$ )
```

```
IF  $p = r$  THEN RETURN  $A[p]$ 
 $q = \text{PARTITION}(A, p, r)$ 
```



```

 $k = q - p + 1$ 
IF  $i \leq k$  THEN
  RETURN  $\text{SELECT}(A, p, q, i)$ 
ELSE
  RETURN  $\text{SELECT}(A, q + 1, r, i - k)$ 
FI
```

Select i 'th elements using $\text{SELECT}(A, 1, n, i)$

- If the partition was perfect ($q = n/2$) we have

$$\begin{aligned}
T(n) &= T(n/2) + n \\
&= n + n/2 + n/4 + n/8 + \dots + 1 \\
&= \sum_{i=0}^{\log n} \frac{n}{2^i} \\
&= n \cdot \sum_{i=0}^{\log n} \left(\frac{1}{2}\right)^i \\
&\leq n \cdot \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^i \\
&= \Theta(n)
\end{aligned}$$

Note:

- * The trick is that we only recurse on one side.
- * In the worst case the algorithm runs in $T(n) = T(n-1) + n = \Theta(n^2)$ time.
- * We could use randomization to get good expected partition.
- * Even if we just always partition such that a constant fraction ($\alpha < 1$) of the elements are eliminated we get running time $T(n) = T(\alpha n) + n = n \sum_{i=0}^{\log n} \alpha^i = \Theta(n)$.
- It turns out that we can modify the algorithm and get $T(n) = \Theta(n)$ in the worst case
 - The idea is to find a split element q such that we always eliminate a fraction of the elements:

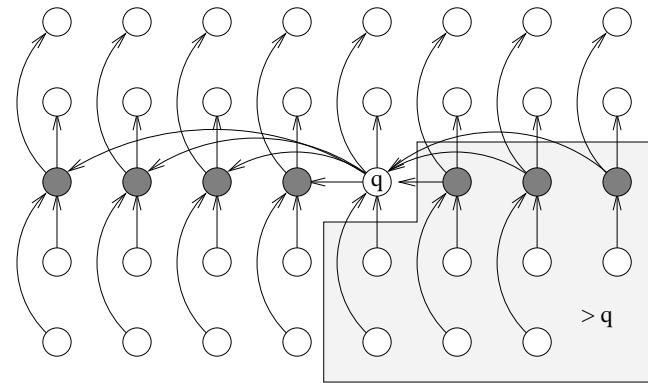
SELECT(i)

- * Divide n elements into groups of 5
- * Select median of each group ($\Rightarrow \lceil \frac{n}{5} \rceil$ selected elements)
- * Use SELECT recursively to find median q of selected elements
- * Partition *all* elements based on q

- * Use SELECT recursively to find i 'th element
 - If $i \leq k$ then use SELECT(i) on k elements
 - If $i > k$ then use SELECT($i - k$) on $n - k$ elements

- If n' is the maximal number of elements we recurse on in the last step of the algorithm the running time is given by $T(n) = \Theta(n) + T(\lceil \frac{n}{5} \rceil) + \Theta(n) + T(n')$
- Estimation of n' :

- Consider the following figure of the groups of 5 elements
 - * An arrow between element e_1 and e_2 indicates that $e_1 > e_2$
 - * The $\lceil \frac{n}{5} \rceil$ selected elements are drawn solid (q is median of these)
 - * Elements definitely $> q$ are indicated with box



- Number of elements $> q$ is *larger* than $3(\frac{1}{2}\lceil\frac{n}{5}\rceil - 2) \geq \frac{3n}{10} - 6$
 - * We get 3 elements from each of $\frac{1}{2}\lceil\frac{n}{5}\rceil$ columns except possibly the one containing q and the last one.
- Similarly the number of elements definitely $< q$ is *larger* than $\frac{3n}{10} - 6$
 - ↓
 - We recurse on at most $n' = n - (\frac{3n}{10} - 6) = \frac{7}{10}n + 6$ elements
- So SELECTION(i) runs in time $T(n) = \Theta(n) + T(\lceil\frac{n}{5}\rceil) + T(\frac{7}{10}n + 6)$
- Solution to $T(n) = n + T(\lceil\frac{n}{5}\rceil) + T(\frac{7}{10}n + 6)$:
 - Guess $T(n) \leq cn$
 - Induction:

$$\begin{aligned}
T(n) &= n + T(\lceil\frac{n}{5}\rceil) + T(\frac{7}{10}n + 6) \\
&\leq n + c \cdot \lceil\frac{n}{5}\rceil + c \cdot (\frac{7}{10}n + 6) \\
&\leq n + c \frac{n}{5} + c + \frac{7}{10}cn + 6c \\
&= \frac{9}{10}cn + n + 7c \\
&\leq cn
\end{aligned}$$

If $7c + n \leq \frac{1}{10}cn$ which can be satisfied (e.g. true for $c = 20$ if $n > 140$)

- Note: It is important that we chose every 5'th element, not all other choices will work (homework).