Lecture 7: Linear Time Selection
(CLRS 9)

September 16, 2003

1 Quick-Sort Review

e The last two lectures we have considered Quick-Sort:

— Divide A[l...n] (using PARTITION) into subarrays A’ = A[l..q—1] and A” = A[g+ 1...n]
such that all elements in A” are larger than A[q] and all elements in A’ are smaller than

Algl.

— Recursively sort A’ and A”.
e We discussed how split point g produced by PARTITION only depends on last element in A
o We discussed how randomization can be used to get good expected partition point.
e Analysis:

— Best case (¢ =n/2): T(n) =2T(n/2) + ©(n) = T(n) = O(nlogn).
— Worst case (g=1): T(n) =T(1) + T(n — 1) + O(n) = T(n) = O(n?).

— Expected case for randomized algorithm: ©(nlogn)

2 Selection

e If we could find element e such that rank(e) = n/2 (the median) in O(n) time we could make
quick-sort run in ©(nlogn) time worst case.

— We could just exchange e with last element in A in beginning of PARTITION and thus
make sure that A is always partition in the middle

e We will consider a more general problem than finding the median:

— Selection problem: Compute SELECT(7)

‘ SELECT(:) is the ¢’th element in the sorted order of elements ‘

— Note: We do not require that we sort to find SELECT(%)

— Note: SELECT(1)=minimum, SELECT(n)=maximum, SELECT(n/2)=median



e Special cases of SELECT(4)

— Minimum or maximum can easily be found in n — 1 comparisons
* Scan through elements maintaining minimum/maximum
— Second largest /smallest element can be found in (n — 1) + (n — 2) = 2n — 3 comparisons

* Find and remove minimum/maximum

* Find minimum/maximum
— Median:

*x Using the above idea repeatedly we can find the median in time Z?ﬁ(n —1i) =
n2/2 = S i =n2/2— (n/2- (n/2+1))/2 = O(n?)
* We can easily design ©(nlogn) algorithm using sorting

e Can we design O(n) time algorithm for general 7?7

e If we could partition nicely (which is what we are really trying to do) we could solve the
problem

— by partitioning and then recursively looking for the element in one of the partitions:

SELECT(A, p,7,1)

IF p = r THEN RETURN A[p]
¢q=PARTITION(A, p, )

p r

\ |
|
| [
=g
k=qg—p+1
IF : < k THEN
RETURN SELECT(A4,p, q,1)
ELSE
RETURN SELECT(A,q+ 1,7,7 — k)
FI

Select i’th elements using SELECT(A4, 1,7,1)
— If the partition was perfect (¢ = n/2) we have

T(n) = T(n/2)+n
= n+n/2+n/d+n/8+---+1

logn

|3

1=0
lo

= Y (G)

o3
3

1
2

<
Il
o

)z’

N | =

A
N
M

i
(o=}

(

I
2
<)



Note:
* The trick is that we only recurse on one side.
+ In the worst case the algorithm runs in T'(n) = T'(n — 1) + n = O(n?) time.
* We could use randomization to get good expected partition.

* Even if we just always partition such that a constant fraction (a < 1) of the elements
are eliminated we get running time T'(n) =T(an) +n=mn Z?’fon o' = 0(n).

e It turns out that we can modify the algorithm and get T'(n) = ©(n) in the worst case

— The idea is to find a split element ¢ such that we always eliminate a fraction of the

elements:
SELECT()
x Divide n elements into groups of 5
* Select median of each group (= [¢] selected elements)
x Use SELECT recursively to find median ¢ of selected elements
x Partition all elements based on ¢
I
k n—-k—=

x Use SELECT recursively to find ¢’th element
- If i <k then use SELECT(i) on k elements
- If i > k then use SELECT(i — k) on n — k elements

— If n’ is the maximal number of elements we recurse on in the last step of the algorithm
the running time is given by T'(n) = O(n) + T([%]) + O(n) + T'(n')

e Estimation of n':

— Consider the following figure of the groups of 5 elements

* An arrow between element e; and ey indicates that e; > e
* The [Z] selected elements are drawn solid (g is median of these)
* Elements definitely > ¢ are indicated with box




— Number of elements > g is larger than 3(5[2] —2) > 32 — 6

* We get 3 elements from each of %[%] columns except possibly the one containing ¢

and the last one.

— Similarly the number of elements definitely < ¢ is larger than 3% —

4

We recurse on at most n/ = n — (3% —

10

) = 151 + 6 elements

e So SELECTION(4) runs in time T'(n) = O(n) + T([2]) + T(&n + 6)

e Solution to T'(n) =n+T([5]) + T(%n + 6):

— Guess T'(n) < cn

— Induction:

IN

IN

<

%) + T(;n +6)

7
n+c-[g'|+c-(ﬁn+6)

e et Len+6
n C— C —Cn
5 10 ¢

gcn—}—n+7c
10

cn

n+T([

If 7c + n < {5en which can be satisfied (e.g. true for ¢ = 20 if n > 140)

— Note: It is important that we chose every 5’th element, not all other choices will work

(homework).



