Gaussian Elimination

Basic form: $A \cdot x = b$.

An example:

\begin{displaymath}
A = \left[\begin{array}
{cccc} 6 & -2 & 2 & 4 \  
 12 & -8 ...
 ...0 \  3 & -13 & 9 & 3 \  -6 & 4 & 1 & -18 \end{array} \right],\end{displaymath}

\begin{displaymath}
x = \left[\begin{array}
{c} x_1 \  x_2 \  x_3 \  x_4 \end{array} \right],\end{displaymath}

\begin{displaymath}
b = \left[\begin{array}
{c} 12 \  34 \  27 \  -38 \end{array} \right].\end{displaymath}

\begin{eqnarraystar}
\left\{
 \begin{array}
{rrrrrrr}
 6 x_1 & - & 2 x_2 & + & 2...
 ...egin{array}
{r}
 12 \  34 \  27 \  -38
 \end{array} \right.\end{eqnarraystar}

1.
Eliminate x1 in equations 2,3 and 4 \begin{eqnarraystar}
\left\{
 \begin{array}
{rrrrrrr}
 6 x_1 & - & 2 x_2 & + & 2...
 ...in{array}
{r}
 12 \  10 \  21 \  -26
 \end{array} \right.
 \end{eqnarraystar}
2.
Eliminate x2 in equations 3 and 4 \begin{eqnarraystar}
\left\{
 \begin{array}
{rrrrrrr}
 6 x_1 & - & 2 x_2 & + & 2...
 ...in{array}
{r}
 12 \  10 \  -9 \  -21
 \end{array} \right.
 \end{eqnarraystar}
3.
Eliminate x3 in equation 4 \begin{eqnarraystar}
\left\{
 \begin{array}
{rrrrrrr}
 6 x_1 & - & 2 x_2 & + & 2...
 ...gin{array}
{r}
 12 \  10 \  -9 \  -3
 \end{array} \right.
 \end{eqnarraystar}
4.
Solve the above system starting from the last equation \begin{eqnarraystar}
\left\{
 \begin{array}
{c}
 x_1 \  x_2 \  x_3 \  x_4
 \e...
 ...begin{array}
{r}
 1 \  -3 \  -2 \  1
 \end{array} \right.
 \end{eqnarraystar}

next up previous
Next: Expressing the Algorithm Up: SOLVING LINEAR SYSTEMS Previous: SOLVING LINEAR SYSTEMS