Some Special Matrices

Square matrix: Same number of rows and columns ($n\times n$).

Identity matrix, $I_{n \times n}$: \begin{eqnarraystar}
I[i,j] & = & \left \{ 
 \begin{array}
{lll}
 1 \;\; & \;\; ...
 ... \  \  0 \;\; & \;\; \mbox{otherwise}
 \end{array} \right.
 \end{eqnarraystar}

Diagonal matrix, $D_{n \times n}$ \begin{eqnarraystar}
D[i,j] & = & 0 \;\;\;\; \mbox{if} \;\; i \neq j
 \end{eqnarraystar}

Tridiagonal matrices, $T_{n \times n}$ \begin{eqnarraystar}
T[i,j] & = & 0 \;\;\;\; \mbox{if} \;\; \vert i - j\vert \gt 1
 \end{eqnarraystar}

Lower-triangular matrices, $L_{n \times n}$ \begin{eqnarraystar}
L[i,j] & = & 0 \;\;\;\; \mbox{if} \;\; i < j
 \end{eqnarraystar}

Upper-triangular matrices, $U_{n \times n}$ \begin{eqnarraystar}
U[i,j] & = & 0 \;\;\;\; \mbox{if} \;\; i \gt j
 \end{eqnarraystar}

Pictures...


next up previous
Next: Basic Matrix Operations Up: MATRICES AND VECTORS Previous: Definitions