Optimal Substructure Theorem

Let $X = \langle x_1, x_2, \ldots,
x_m\rangle$ and $Y=\langle
y_1,y_2,\ldots,y_n\rangle$ be sequences, and let $Z=\langle
z_1,z_2,\ldots,z_k\rangle$ be any LCS of X and Y.


next up previous
Next: Recursive Formula Up: LONGEST COMMON SUBSEQUENCE Previous: Algorithmic Ideas