CPS 130
Homework 2
Due February 12 at the beginning of class

Homework

• Use a separate sheet for each problem.
• Make sure you write your name on every sheet.
• Collaboration is allowed, even encouraged, provided that the names of collaborators are
listed on solutions - you must write up your solutions on your own. No credit is given for
solutions received late. For special situations contact Lars Arge.
• Make sure to justify your answers!

1. Solve the recurrence: \(T(n) = \begin{cases} 1 & \text{if } n = 1 \\ T(n - 1) + n(n - 1) & \text{if } n \geq 2 \end{cases} \)

 Hint: use \(\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \).

2. Give asymptotic upper and lower bounds for the following recurrences. Assume \(T(n) \) is
 constant for \(n \leq 8 \). Make your bounds as tight as possible, and justify your answers.
 (a) \(T(n) = 2T(n/2) + n^3 \)
 (b) \(T(n) = 2T(n/4) + \sqrt{n} \)
 (c) \(T(n) = 7T(n/2) + n^2 \)

3. Give asymptotic upper and lower bounds for the following recurrences. Assume \(T(n) \) is
 constant for \(n \leq 8 \). Make your bounds as tight as possible, and justify your answers.
 (a) \(T(n) = T(n - 1) + n \)
 (b) \(T(n) = T(\sqrt{n}) + 1 \)
 (c) \(T(n) = 2T(n/2) + n/\log n \)
 (d) \(T(n) = T(n - 1) + 1/n \)

4. 7.1-2 CLRS

5. 7.4-5 CLRS

6. 7-3 CLRS
Practice problems for recitation sessions

1. [From CPS130 spring 2000 midterm]
 Solve the recurrence: \(T(n) = \begin{cases}
 1 & \text{if } n = 1 \\
 T(n - 1) + n(n - 1)(n + 1) & \text{if } n \geq 2
 \end{cases} \)

 Hint: use \(\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4} \)

2. [From CPS130 spring 2000 final]
 Show by induction that the recurrence \(T(n) = \begin{cases}
 1 & \text{if } n = 1 \\
 2T\left(\frac{n}{2}\right) + b\log n & \text{if } n \geq 2
 \end{cases} \)
 where \(b \) is a positive constant has solution \(T(n) = O(n) \).

 Hint: Show that there exist positive constants \(a \) and \(c \) such that \(T(n) \leq an - b\log n - c \).

3. 7-2 CLR

4. 7-4 CLR