Lecture 13: Dynamic Programming
(CLRS 15.2-15.3)

February 21, 2002

1 Dynamic programming

- We have previously discussed how divide-and-conquer can often be used to obtain efficient algorithms.
 - Examples: matrix multiplication, merge-sort, quick-sort,...

- Sometimes direct use of divide-and-conquer does not yield efficient algorithms—in fact, sometimes it results in really bad algorithms.

- Today we will discuss a technique which can often be used to improve upon an inefficient divide-and-conquer algorithm.
 - The technique is called "Dynamic programming". It is neither especially 'dynamic' nor especially 'programming' related.
 - We will discuss dynamic programming by looking at an example.

1.1 Matrix-chain multiplication

- Problem: Given a sequence of matrices $A_1, A_2, A_3, ..., A_n$, find the best way (using the minimal number of multiplications) to compute their product.

 - Isn’t there only one way? $((\cdots ((A_1 \cdot A_2) \cdot A_3) \cdots) \cdot A_n)$
 - No, matrix multiplication is associative.
 - e.g. $A_1 \cdot (A_2 \cdot (A_3 \cdot (\cdots (A_{n-1} \cdot A_n) \cdots)))$ yields the same matrix.
 - Different multiplication orders do not cost the same:
 - * Multiplying $p \times q$ matrix A and $q \times r$ matrix B takes $p \cdot q \cdot r$ multiplications; result is a $p \times r$ matrix,
 - * Consider multiplying 10×100 matrix A_1 with 100×5 matrix A_2 and 5×50 matrix A_3.
 - $(A_1 \cdot A_2) \cdot A_3$ takes $10 \cdot 100 \cdot 5 + 10 \cdot 5 \cdot 50 = 7500$ multiplications.
 - $A_1 \cdot (A_2 \cdot A_3)$ takes $100 \cdot 5 \cdot 50 + 10 \cdot 50 \cdot 100 = 75000$ multiplications.

- In general, let A_i be $p_{i-1} \times p_i$ matrix.
 - $A_1, A_2, A_3, ..., A_n$ can be represented by $p_0, p_1, p_2, p_3, ..., p_n$

- Let $m(i, j)$ denote minimal number of multiplications needed to compute $A_i \cdot A_{i+1} \cdot ... \cdot A_j$
 - We want to compute $m(1,n)$.
• Divide-and-conquer solution/recursive algorithm:
 - Divide into $j - i - 1$ subproblems by trying to set parenthesis in all $j - i - 1$ positions.
 (e.g. $(A_i \cdots A_{i+1} \cdots A_k) \cdot (A_{k+1} \cdots A_j)$ corresponds to multiplying $p_{i-1} \times p_k$ and $p_k \times p_j$
 matrices.)
 - Recursively find best way of solving sub-problems. (e.g. best way of computing $A_i \cdots A_{i+1} \cdots A_k$ and $A_{k+1} \cdots A_{k+2} \cdots A_j$)
 - Pick best solution.
• Algorithm expressed in terms of $m(i, j)$:

 \[
 m(i, j) = \begin{cases}
 0 & \text{if } i = j \\
 \min_{i < k < j}\{m(i, k) + m(k + 1, j) + p_{i-1} \cdot p_k \cdot p_j\} & \text{if } i < j
 \end{cases}
 \]

• Program:

```plaintext
MATRIX-CHAIN(i, j)
  IF i = j THEN return 0
  m(i, j) = \infty
  FOR k = i TO j - 1 DO
    q = MATRIX-CHAIN(i, k) + MATRIX-CHAIN(k + 1, j) + p_{i-1} \cdot p_k \cdot p_j
    IF q < m(i, j) THEN m(i, j) = q
  OD
  Return m(i, j)
END MATRIX-CHAIN

Return MATRIX-CHAIN(1, n)
```

• Running time:

 \[
 T(n) = \sum_{k=1}^{n-1} (T(k) + T(n - k) + O(1))
 \]

 \[
 = 2 \cdot \sum_{k=1}^{n-1} T(k) + O(n)
 \]

 \[
 \geq 2 \cdot T(n - 1)
 \]

 \[
 \geq 2 \cdot 2 \cdot T(n - 2)
 \]

 \[
 \geq 2 \cdot 2 \cdot 2 \cdots
 \]

 \[
 = 2^n
 \]

• Problem is that we compute the same result over and over again.
 - Example: Recursion tree for MATRIX-CHAIN(1, 4)
We for example compute $\text{Matrix-chain}(3, 4)$ twice.

- Solution is to "remember" values we have already computed in a table—*memorization*

$$
\text{Matrix-chain}(i, j) \\
\quad \text{IF } i = j \text{ THEN return } 0 \\
\quad \text{IF } m(i, j) < \infty \text{ THEN return } m(i, j) \quad / * \text{ This line has changed */} \\
\quad \text{FOR } k = i \text{ to } j - 1 \text{ DO} \\
\quad \quad q = \text{Matrix-chain}(i, k) + \text{Matrix-chain}(k + 1, j) + p_{i-1} \cdot p_k \cdot p_j \\
\quad \quad \text{IF } q < m(i, j) \text{ THEN } m(i, j) = q \\
\quad \text{OD} \\
\quad \text{return } m(i, j) \\
\text{END Matrix-chain}
$$

- Running time:
 - $\Theta(n^2)$ different calls to $\text{Matrix-chain}(i, j)$.
 - The first time a call is made it takes $O(n)$ time, not counting recursive calls.
 - When a call has been made once it costs $O(1)$ time to make it again.
 - $O(n^3)$ time
 - Another way of thinking about it: $\Theta(n^2)$ total entries to fill, it takes $O(n)$ to fill one.
1.2 Alternative view of Dynamic Programming

- Often (including in the book) dynamic programming is presented in a different way; As filling up a table from the bottom.

- Matrix-chain example: Key is that \(m(i, j) \) only depends on \(m(i, k) \) and \(m(k + 1, j) \) where \(i \leq k < j \Rightarrow \) if we have computed them, we can compute \(m(i, j) \)

 - We can easily compute \(m(i, i) \) for all \(1 \leq i \leq n \) (\(m(i, i) = 0 \))

 - Then we can easily compute \(m(i, i + 1) \) for all \(1 \leq i \leq n - 1 \)

 \[m(i, i + 1) = m(i, i) + m(i + 1, i + 1) + p_{i-1} \cdot p_i \cdot p_{i+1} \]

 - Then we can compute \(m(i, i + 2) \) for all \(1 \leq i \leq n - 2 \)

 \[m(i, i + 2) = \min \{ m(i, i) + m(i + 1, i + 2) + p_{i-1} \cdot p_i \cdot p_{i+2}, m(i, i + 1) + m(i + 2, i + 2) + p_{i-1} \cdot p_{i+1} \cdot p_{i+2} \} \]

 - ...Until we compute \(m(1, n) \)

- Computation order:

 \[
 \begin{array}{cccccccc}
 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
 2 & 1 & 2 & 3 & 4 & 5 & 6 & \\
 3 & 1 & 2 & 3 & 4 & & & \\
 4 & 1 & 2 & 3 & & & & \\
 5 & 1 & 2 & & & & & \\
 6 & 1 & & & & & & \\
 7 & & & & & & & \\
 \end{array}
 \]

- Program:

 FOR \(i = 1 \) to \(n \) DO

 \[m(i, i) = 0 \]

 OD

 FOR \(l = 1 \) to \(n - 1 \) DO

 FOR \(i = 1 \) to \(n - l \) DO

 \[j = i + l \]

 \[m(i, j) = \infty \]

 FOR \(k = 1 \) to \(j - 1 \) DO

 \[q = m(i, k) + m(k + 1, j) + p_{i-1} \cdot p_k \cdot p_j \]

 IF \(q < m(i, j) \) THEN \(m(i, j) = q \)

 OD

 OD

 OD

4
• Analysis:
 - $O(n^2)$ entries, $O(n)$ time to compute each $\Rightarrow O(n^3)$.
• Note:
 - I like recursive (divide-and-conquer) thinking.
 - Book seems to like table method better.
 - I like divide-and-conquer because one does not need to get new idea (write new program) — just use table!