Lecture 14: Amortized Analysis
(CLRS 17.1-17.3)

March 5, 2002

1 Amortized Analysis

- Until now we have seen a number of data structures and analyzed the worst-case running time of each individual operation.

- Sometimes the cost of an operation vary widely, so that that worst-case running time is not really a good cost measure.

- Similarly, sometimes the cost of every single operation is not so important
 - the total cost of a series of operations are more important (e.g. when using priority queue to sort)

- We want to analyze running time of one single operation averaged over a sequence of operations
 - Note: We are not interested in an average case analyses that depends on some input distribution or random choices made by algorithm.

- To capture this we define amortized time.

<table>
<thead>
<tr>
<th>If any sequence of n operations on a data structure takes $\leq T(n)$ time, the amortized time per operation is $T(n)/n$</th>
</tr>
</thead>
</table>

- Equivalently, if the amortized time of one operation is $U(n)$, then any sequence of n operations takes $n \cdot U(n)$ time.

- Again keep in mind: “Average” is over a sequence of operations for any sequence
 - not average for some input distribution (as in quick-sort)
 - not average over random choices made by algorithm (as in skip-lists)
1.1 Example: Stack with MultiPOP

- As we know, a normal stack is a data structure with operations
 - PUSH: Insert new element at top of stack
 - POP: Delete top element from stack

- A stack can easily be implemented (using linked list) such that PUSH and POP takes $O(1)$ time.

- Consider the addition of another operation:
 - MultiPOP(k): POP k elements off the stack.

- Analysis of a sequence of n operations:
 - One MultiPOP can take $O(n)$ time $\Rightarrow O(n^2)$ running time.
 - Amortized running time of each operation is $O(1) \Rightarrow O(n)$ running time.
 * Each element can be popped at most once each time it is pushed
 - Number of POP operations (including the one done by MultiPOP) is bounded by n
 - Total cost of n operations is $O(n)$
 - Amortized cost of one operation is $O(n)/n = O(1)$.

1.2 Example: Binary counter

- Consider the following (somewhat artificial) data structure problem: Maintain a binary counter under n INCREMENT operations (assuming that the counter value is initially 0)
 - Data structure consists of an (infinite) array A of bits such that $A[i]$ is either 0 or 1.
 - $A[0]$ is lowest order bit, so value of counter is $x = \sum_{i \geq 0} A[i] \cdot 2^i$
 - INCREMENT operation:

 $\begin{align*}
 A[0] &= A[0] + 1 \\
 i &= 0 \\
 \text{WHILE } A[i] &= 2 \text{ DO} \\
 \quad A[i] &= A[i] + 1 \\
 \quad A[i] &= 0 \\
 \quad i &= i + 1 \\
 \end{align*}$

- The running time of INCREMENT is the number of iterations of while loop +1.

Example (Note: Bit furthest to the right is $A[0]$):

- $x = 47 \Rightarrow A = \langle 0, \ldots, 0, 1, 0, 1, 1, 1, 1 \rangle$
- $x = 48 \Rightarrow A = \langle 0, \ldots, 0, 1, 1, 0, 0, 0, 0 \rangle$
- $x = 49 \Rightarrow A = \langle 0, \ldots, 0, 1, 1, 0, 0, 0, 1 \rangle$

INCREMENT from $x = 47$ to $x = 48$ has cost 5
INCREMENT from $x = 48$ to $x = 49$ has cost 1
• Analysis of a sequence of n INCREMENTS

 – Number of bits in representation of n is $\log n \Rightarrow n$ operations cost $O(n \log n)$.

 – Amortized running time of INCREMENT is $O(1) \Rightarrow O(n)$ running time:

 * $A[0]$ flips on each increment (n times in total)
 * $A[1]$ flips on every second increment ($n/2$ times in total)
 * $A[2]$ flips on every fourth increment ($n/4$ times in total)

 \[
 \downarrow
 \]

 \[
 \text{Total running time: } T(n) = \sum_{i=0}^{\log n} \frac{n}{2^i} \\
 \leq n \cdot \sum_{i=0}^{\log n} \left(\frac{1}{2}\right)^i \\
 = O(n)
 \]

2 Potential Method

• In the two previous examples we basically just did a careful analysis to get $O(n)$ bounds leading to $O(1)$ amortized bounds.

 – book calls this aggregate analysis.

• In aggregate analysis, all operations have the same amortized cost (total cost divided by n)

 – other and more sophisticated amortized analysis methods allow different operations to have different amortized costs.

• Potential method:

 – Idea is to overcharge some operations and store the overcharge as credits/potential which can then help pay for later operations (making them cheaper).

 – Leads to equivalent but slightly different definition of amortized time.

• Consider performing n operations on an initial data structure D_0

 – D_i is data structure after ith operation, $i = 1, 2, \ldots, n$.

 – c_i is actual cost (time) of ith operation, $i = 1, 2, \ldots, n$.

 \[
 \downarrow
 \]

 Total cost of n operations is $\sum_{i=0}^{n} c_i$.

• We define potential function mapping D_i to R. ($\Phi : D_i \rightarrow R$)

 – $\Phi(D_i)$ is potential associated with D_i

• We define amortized cost \bar{c}_i of ith operation as $\bar{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$

 – \bar{c}_i is sum of real cost and increase in potential

 \[
 \downarrow
 \]

 – If potential decreases the amortized cost is lower than actual cost (we use saved potential/credits)

 – If potential increases the amortized cost is larger than actual cost (we overcharge operation to save potential/credits).
• Key is that, as previously, we can bound total cost of all the n operations by the total amortized cost of all n operations:

$$
\sum_{i=1}^{n} c_k = \sum_{i=1}^{n} (\tilde{c}_i + \Phi(D_{i-1}) - \Phi(D_i))
$$

$$
= \Phi(D_0) - \Phi(D_n) + \sum_{i=1}^{n} \tilde{c}_i
$$

\[\downarrow \]

$$
\sum_{i=1}^{n} c_k \leq \sum_{i=1}^{n} \tilde{c}_i \text{ if } \Phi(D_0) = 0 \text{ and } \Phi(D_i) \geq 0 \text{ for all } i \text{ (or even if just } \Phi(D_n) \geq \Phi(D_0))
$$

2.1 Example: Stack with multipop

• Define $\Phi(D_i)$ to be the size of stack $D_i \Rightarrow \Phi(D_0) = 0$ and $\Phi(D_i) \geq 0$

• Amortized costs:

 - **PUSH:**
 $$
 \tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})
 $$
 $$
 = 1 + 1
 $$
 $$
 = 2
 $$
 $$
 = O(1).
 $$

 - **POP:**
 $$
 \tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})
 $$
 $$
 = 1 + (-1)
 $$
 $$
 = 0
 $$
 $$
 = O(1).
 $$

 - **MULTIPOP(k):**
 $$
 \tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})
 $$
 $$
 = k + (-k)
 $$
 $$
 = 0
 $$
 $$
 = O(1).
 $$

• Total cost of n operations: $\sum_{i=1}^{n} c_k \leq \sum_{i=1}^{n} \tilde{c}_i = O(n)$.

2.2 Example: Binary counter

• Define $\Phi(D_i) = \sum_{i \geq 0} A[i] \Rightarrow \Phi(D_0) = 0$ and $\Phi(D_i) \geq 0$

 - $\Phi(D_i)$ is the number of ones in counter.

• Amortized cost of ith operation: $\tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$

 - Consider the case where first k positions in A are 1 $A = \langle 0, 0, \cdots, 1, 1, 1, 1, \cdots, 1 \rangle$

 - In this case $c_i = k + 1$

 - $\Phi(D_k) - \Phi(D_{i-1})$ is $-k + 1$ since the first k positions of A are 0 after the increment and the $k + 1$th position is changed to 1 (all other positions are unchanged)

 \[\downarrow \]

 $$
 \tilde{c}_i = k + 1 - k + 1 = 2 = O(1)
 $$

• Total cost of n increments: $\sum_{i=1}^{n} c_k \leq \sum_{i=1}^{n} \tilde{c}_i = O(n)$.

4
2.3 Notes on amortized cost

- Amortized cost depends on choice of Φ
- Different operations can have different amortized costs.
- Often we think about potential/credits as being distributed on certain parts of data structure.

In multipop example:
- Every element holds one credit.
- PUSH: Pay for operation (cost 1) and for placing one credit on new element (cost 1).
- POP: Use credit of removed element to pay for the operation.
- MULTIPOP: Use credits on removed elements to pay for the operation.

In counter example:
- Every 1 in A holds one credit.
- Change from 1 \rightarrow 0 payed using credit.
- Change from 0 \rightarrow 1 payed by INCREMENT; pay one credit to do the flip and place one credit on new 1.

\[\Downarrow \]
INCREMENT cost $O(1)$ amortized (at most one $0 \rightarrow 1$ change).

- Book calls this the accounting method
 - Note: Credits only used for analysis and is not part of data structure

- Hard part of amortized analysis is often to come up with potential function Φ
 - Some people prefer using potential function (potential method), some prefer thinking about placing credits on data structure (Accounting method)
 - Accounting method often good for relatively easy examples.

- Next time we will discuss an elegant “self-adjusting” search tree data structure with amortized $O(\log n)$ bonds for all operations (splay trees).