Lecture 15: Splay Trees
(Handout)

March 19, 2002

1 Amortized Analysis

- Last time we discussed amortized analysis of data structures
 - A way of expressing that even though the worst-case performance of an operation can be bad, the total performance of a sequence of operations cannot be too bad.

- One way of thinking of amortized time is as being an “average”: If any sequence of n operations takes less than $T(n)$ time, the amortized time per operation is $T(n)/n$.

- We formally defined amortized time using the idea that we over-charge some operations and store the over-charge as credits/potential that can then help pay for later operations (potential method)
 - Consider performing n operations on an initial data structure D_0
 - D_i is data structure after ith operation.
 - c_i is actual cost (time) of ith operation.
 - Potential function: $\Phi : D_i \rightarrow \mathbb{R}$
 - \tilde{c}_i amortized cost of ith operation: $\tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$
 - Given $\Phi(D_0) = 0$ and $\Phi(D_i) \geq 0$: $\sum_{i=1}^{n} c_i \leq \sum_{i=1}^{n} \tilde{c}_i$

- We also discussed two examples of amortized analysis
 - Stack with MULTIPOP ($O(n)$ worst-case, $O(1)$ amortized).
 - INCREMENT on binary counter ($O(\log n)$ worst-case, $O(1)$ amortized).

In both cases we could argue for $O(1)$ amortized performance without actually doing potential calculation—we just think about potential/credits as being distributed on certain parts of the data structure and let operations put and take credits while maintaining some invariant (accounting method).
2 Splay trees

- We have previously discussed binary search trees and how they can be kept balanced ($O(\log n)$ height) during insert and delete operations (red-black trees).

 - Rebalancing rather complicated
 - Extra space used for the color of each node

- We also discussed skip lists which are a lot simpler than red-black trees

 - Only guarantee $O(\log n)$ expected performance
 - No extra information is used for rebalance information though

- Splay trees are search trees that “magically” balance themselves (no rebalance information is stored) and have amortized $O(\log n)$ performance.

- Recall search trees:

 - Binary tree with elements in nodes
 - If node v holds element e then

 * all elements in left subtree < e
 * all elements in left subtree > e

- Splay tree:

 - Normal (possibly unbalanced) search tree T
 - All operations implemented using one basic operation, SPLAY:

 SPLAY(x, T) searches for x in T and reorganizes tree such that x
 (or min element > x or max element < x) is in root

 - SEARCH(x, T): SPLAY(x, T) and inspect root
 - INSERT(x, T): SPLAY(x, T) and create new root with x

\[T \xrightarrow{\text{splay}(x, T)} T_1 \rightarrow T_2 \rightarrow T_1 \xrightarrow{r} T_2 \xrightarrow{x} T_1 \xrightarrow{\text{or}} T_2 \xrightarrow{r} T_1 \]
- DELETE \((x, T)\):
 * SPLAY \((x, T)\) and remove root → tree falls into \(T1\) and \(T2\).
 * SPLAY \((x, T1)\)
 * Make \(T2\) right son of new root of \(T1\) after splay

\[
\text{splay}(x,T) \quad \rightarrow \quad x \quad \rightarrow \quad T1 \quad T2
\]

\[
\text{splay}(x,T1) \quad \rightarrow \quad T1' \quad T2 \quad \rightarrow \quad T1' \quad T2
\]

\[
\downarrow
\]

All operations perform \(O(1)\) SPLAY’s and use \(O(1)\) extra time.

\[
\downarrow
\]

\(O(\log n)\) amortized SPLAY gives \(O(\log n)\) amortized bound on all operations.

- Implementation of SPLAY:
 - Search for \(x\) like in normal search tree
 - Repeatedly rotate \(x\) up until it becomes the root.

We distinguish between three cases:

1. \(x\) is child of root (no grandparent): rotate \((x)\)

\[
\text{e.g.}
\]

\[
\begin{array}{c}
\text{\(x\)}
\end{array} \quad \begin{array}{c}
\text{\(y\)}
\end{array} \quad \rightarrow \quad \begin{array}{c}
\text{\(x\)}
\end{array}
\]

\[
\begin{array}{c}
\text{\(T1\)}
\end{array} \quad \begin{array}{c}
\text{\(T2\)}
\end{array} \quad \begin{array}{c}
\text{\(T3\)}
\end{array} \quad \rightarrow \quad \begin{array}{c}
\text{\(T1\)}
\end{array} \quad \begin{array}{c}
\text{\(T2\)}
\end{array} \quad \begin{array}{c}
\text{\(T3\)}
\end{array}
\]

2. \(x\) has parent \(y\) and grandparent \(z\) and both \(x\) and \(y\) left (right) children: rotate \((y)\) followed by rotate \((x)\)

\[
\text{e.g.}
\]

\[
\begin{array}{c}
\text{\(x\)}
\end{array} \quad \begin{array}{c}
\text{\(z\)}
\end{array} \quad \rightarrow \quad \begin{array}{c}
\text{\(x\)}
\end{array} \quad \begin{array}{c}
\text{\(y\)}
\end{array} \quad \rightarrow \quad \begin{array}{c}
\text{\(x\)}
\end{array} \quad \begin{array}{c}
\text{\(y\)}
\end{array}
\]

\[
\begin{array}{c}
\text{\(T1\)}
\end{array} \quad \begin{array}{c}
\text{\(T2\)}
\end{array} \quad \begin{array}{c}
\text{\(T3\)}
\end{array} \quad \rightarrow \quad \begin{array}{c}
\text{\(T1\)}
\end{array} \quad \begin{array}{c}
\text{\(T2\)}
\end{array} \quad \begin{array}{c}
\text{\(T3\)}
\end{array} \quad \begin{array}{c}
\text{\(T4\)}
\end{array}
\]

\[
\begin{array}{c}
\text{\(x\)}
\end{array} \quad \begin{array}{c}
\text{\(z\)}
\end{array} \quad \rightarrow \quad \begin{array}{c}
\text{\(x\)}
\end{array} \quad \begin{array}{c}
\text{\(z\)}
\end{array}
\]

\[
\begin{array}{c}
\text{\(T1\)}
\end{array} \quad \begin{array}{c}
\text{\(T2\)}
\end{array} \quad \begin{array}{c}
\text{\(T3\)}
\end{array} \quad \begin{array}{c}
\text{\(T4\)}
\end{array}
\]
3. x has parent y and grandparent z and one of x and y is a left child and the other is a right child: \textbf{rotate}(x) followed by \textbf{rotate}(x)

e.g.

- A SPLAY can take $O(n)$ worst-case time (very unbalanced tree)
- But Splay trees somehow seem to stay nicely balanced

\textbf{Examples: SPLAY}(1, T)

\textbf{SPLAY}(5, T)
• Analysis:

 – We will use accounting method to show that all operations (SPLAY) takes $O(\log n)$ amortized time.
 * We will imagine that each node in tree has credits on it
 * We will use some credits to pay for (part of) rotations during a splay
 * We will see that we only have to place $O(\log n)$ new credits (on root) when performing an INSERT or DELETE

 – Note that we will ignore cost of searching for x, since the rotations cost at least as much as the search (⇒ if we can bound amortized rotation cost we also bound search cost).

 – Let $T(x)$ be tree rooted at x. We will maintain the credit invariant that each node x holds $\mu(x) = \lfloor \log |T(x)| \rfloor$ credits.

 – We will prove the following lemma:

| Less than or equal to $3(\mu(T) - \mu(x) + O(1))$ credits are needed to perform SPLAY(x, T) operation and maintain credit invariant |

 – Using this lemma we get that a SPLAY operation uses at most $3\lfloor \log n \rfloor + O(1) = O(\log n)$ credits (time).

 – As an INSERT or a DELETE requires us to insert at most $O(\log n)$ extra credits (on the root) more than the ones used on the SPLAY, we get the $O(\log n)$ amortized bound.

• Proof of lemma:

 – Let μ and μ' be the value of μ before and after a rotate operation in case 1, 2, or 3.

 – During a SPLAY operation we perform a number of, say $k \geq 0$, case 2 and 3 operations and possibly a case 1 operation.

 – Next time we will show that the cost of one operation is:
 * Case 1: $3(\mu'(x) - \mu(x) + O(1))$
 * Case 2: $3(\mu'(x) - \mu(x))$
 * Case 3: $3(\mu'(x) - \mu(x))$

\[\downarrow \]

When we sum over all $\leq k + 1$ operations in a splay we get $3(\mu(T) - \mu(x) + O(1))$ where $\mu(x)$ is the number of credits on x before the SPLAY.

Note that it is important that we only have the $O(1)$ term in case 1.