Lecture 20: Union-Find and Shortest Path
(CLRS 21.1-21.3, 24.0)

April 9, 2002

1 Union-Find

- Last time we discussed Kruskal’s minimum spanning tree algorithm

<table>
<thead>
<tr>
<th>KRUSKAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T = \emptyset$</td>
</tr>
<tr>
<td>FOR each vertex $v \in V$ DO</td>
</tr>
<tr>
<td>MAKE-SET(v)</td>
</tr>
<tr>
<td>OD</td>
</tr>
<tr>
<td>Sort edges of E in increasing order by weight</td>
</tr>
<tr>
<td>FOR each edge $e = (u, v) \in E$ in order DO</td>
</tr>
<tr>
<td>IF FIND-SET(u) \neq FIND-SET(v) THEN</td>
</tr>
<tr>
<td>$T = T \cup {e}$</td>
</tr>
<tr>
<td>UNION-SET(u, v)</td>
</tr>
<tr>
<td>FI</td>
</tr>
<tr>
<td>OD</td>
</tr>
</tbody>
</table>

- Kruskal’s algorithm uses a Union-Find data structure supporting:
 - MAKE-SET(v): Create set consisting of v
 - UNION-SET(u, v): Unite set containing u and set containing v
 - FIND-SET(u): Return unique representative for set containing u

- In the algorithm we performed $|V|$ MAKE-SET, $|V| - 1$ UNION-SET, and $2|E|$ FIND-SET operations.

- Simple solution to Union-Find problem (maintain set system under FIND-SET and UNION-SET)
 - Maintain elements in same set as a linked list with each element having a pointer to the first element in the list (unique representative)
Example:

Sets

- **MAKE-SET(v):** Make a list with one element \(\Rightarrow O(1) \) time
- **FIND-SET(u):** Follow pointer and return unique representative \(\Rightarrow O(1) \) time
- **UNION-SET(u, v):** Link first element in list with unique representative **FIND-SET(u)** after last element in list with unique representative **FIND-SET(v)** \(\Rightarrow O(|V|) \) time (as we have to update all unique representative pointers in list containing u)

- With this simple solution the \(|V| - 1 \) **UNION-SET** operations in Kruskal’s algorithm may take \(O(|V|^2) \) time.
- We can improve the performance of **UNION-SET** with a very simple modification: Always link the smaller list after the longer list \(\Rightarrow \) update the pointers of the smaller list
 - One **UNION-SET** operation can still take \(O(|V|) \) time, but the \(|V| - 1 \) **UNION-SET** operations take \(O(|V| \log |V|) \) time altogether (one **UNION-SET** takes \(O(\log |V|) \) time *amortized*):
 * Total time is proportional to number of unique representative pointer changes
 * Consider element u:
 After pointer for u is updated, u belongs to a list of size at least double the size of the list it was in before
 \[\Downarrow \]
 After k pointer changes, u is in list of size at least \(2^k \)
 \[\Downarrow \]
 Pointer can be changed at most \(\log |V| \) times.
- With improvement, Kruskal’s algorithm runs in time \(O(|E| \log |E| + |V| \log |V|) = O((|E| + |V|) \log |E|) = O(|E| \log |V|) \) like Prim’s algorithm.
1.1 Improved Union-Find

- It turns out that Union-Find can be improved (but without leading to an improvement of Kruskal’s algorithm)
 - Linked list representation can also be viewed as trees of height 1

Example:

```
  3
 / \      /
1  2  10  6
```

- Instead of updating root pointers when performing UNION-SET, we could just link one tree below the root of the other

Example: UNION-SET(2,6)

```
  3
 / \      /
1  2  10  6
    /  /
   8  4  5  12
```

UNION-SET and FIND-SET takes \(O(\log |V|)\) time if we always insert small tree below larger tree (trees have height \(O(\log |V|)\))

\[|E|\] FIND-SET operations takes \(O(|E|\log |V|)\) time

- If we furthermore perform path-compression, \(|E|\) Find-set operations can be performed even faster

Path-compression: When following path during FIND-SET we link traversed nodes directly to the root:

Example:

```
  X
 / |
/  |
```

Note that a lot of paths are shortened (decreasing time spent on future FIND-SET operations) without using extra time
It can be shown that $O(|E| \log^* |V|)$ is the total time used on the $O(|E|)$ FIND-SET and UNION-SET operations

- $\log^* n$ is an extremely slow growing function

 - Consider $g(n) = \begin{cases} 2^1 & \text{if } i = 0 \\ 2^2 & \text{if } i = 1 \\ 2^2(n-1) & \text{if } i \geq 2 \end{cases}$

 \[\downarrow \]

 $g(0) = 2$
 $g(1) = 2^2 = 4$
 $g(2) = 2^{2^2} = 2^4 = 16$
 $g(3) = 2^{2^{2^2}} = 2^{16} = 65536$

 \[\vdots \]

 $g(i) = 2^{2^{i-2}}$ (2-stack of height i)

 \[\downarrow \]

 $g(n)$ extremely fast growing function.

- Define $\log^{(i)} n = \begin{cases} n & \text{if } i = 0 \\ \log \log^{(i-1)} n & \text{otherwise} \end{cases}$

 \[\downarrow \]

 $\log^* n = \min \{ i \geq 0 : \log^{(i)} n \leq 1 \}$

 \[\downarrow \]

 $\log^* n$ is minimal number of times we need to take log to get below 1

 \[\downarrow \]

 $\log^* n$ is inverse of $g(n)$

 \[\downarrow \]

 $\log^* n$ extremely slow growing function

- $\log^* n \leq 5$ for all practical values of n

- One can even prove that with path-compression $O(|E| \cdot \alpha(|V|))$ is the total time spent on $|E|$ FIND-SET operations, where $\alpha(n)$ is a function growing even slower than $\log^* n$ (Inverse Ackerman function)

 * $\alpha(n) < 4$ for all practical values of n

2 Shortest path

- We will now consider a problem related to minimum spanning trees; shortest paths

 - We already discussed how BFS can be used to find shortest paths if the length of a path is defined to be the number of edges on it

 - In general we have weights on edges and we are interested in shortest paths with respect to the sum of the weights of edges on a path

Example: Finding shortest driving distance between two addresses (lots of www-sites with this functionality). Note that weight on an edge (road) can be more than just distance (weight can e.g. be a function of distance, road condition, congestion probability, etc).
• Formal definition of shortest path: \(G = (V,E) \) weighted graph. Weight of path \(P = <v_0, v_1, v_2, \ldots, v_k> \) is \(w(P) = \sum_{i=1}^{k} w(v_{i-1}, v_i) \). Shortest path \(\delta(u,v) \) from \(u \) to \(v \) has weight

\[
\delta(u,v) = \begin{cases}
\min\{w(P) : P \text{ is path from } u \text{ to } v\} & \text{If path exists} \\
\infty & \text{Otherwise}
\end{cases}
\]

Example: Shortest path from \(a \) to \(e \) (of length 21)

- Note:
 - If \(P = <u = v_0, v_1, v_2, \ldots, v_k = v> \) is shortest path from \(u \) to \(v \) then for all \(i < k \) \(P' = <u = v_0, v_1, v_2, \ldots, v_i> \) is shortest path from \(u \) to \(v_i \)
 - Shortest path is not necessarily part of minimum spanning tree.

Example: Minimum spanning tree for example graph:

- No (unique) shortest path exists if graph has cycle with negative weight

Example: If we change weight of edge \((h,i)\) to \(-8\), we have a cycle \((i,h,g)\) with negative weight \((-1)\). Using this we can make the weight of path between \(a \) and \(e \) arbitrarily low by going through the cycle several times

On the other hand, the problem is well defined if we let edge \((h,i)\) have weight \(-7\) (no negative cycles)
- We will only consider graphs with non-negative weights
• Different variants of shortest path problem:

 - *Single pair shortest path:* Find shortest path from u to v
 - *Single source shortest path (SSSP):* Find shortest path from source s to all vertices $v \in V$
 - *All pair shortest path (APSP):* Find shortest path from u to v for all $u, v \in V$

• Note:

 - No algorithm is known for computing a single pair shortest path better than solving the ("bigger") SSSP problem
 - APSP can be solved by running SSSP $|V|$ times

 \[
 \downarrow
 \]

 We will concentrate on SSSP problem

• Next time we will discuss Dijkstra’s algorithm for the SSSP problem.