Lecture 3: Summations and Recurrences

(CLRS A, 4.1)

January 17, 2002

1 Summations

When analyzing insertion-sort we used
\[\sum_{k=1}^{n} k = 1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2} = \Theta(n^2) \] (Arithmetic series)

How can we prove this?

- Asymptotic:
 Often good estimates can be found by using the largest value to bound others:
 \[\sum_{k=1}^{n} k \leq \sum_{k=1}^{n} n = n \cdot \sum_{k=1}^{n} 1 = n^2 = O(n^2) \]
 Another trick: Splitting the sum:
 \[\sum_{k=1}^{n} k = \sum_{k=1}^{\frac{n}{2}} k + \sum_{k=\frac{n}{2}+1}^{n} k \geq \sum_{k=1}^{\frac{n}{2}} 0 + \sum_{k=\frac{n}{2}}^{n} k \geq \left(\frac{n}{2}\right)^2 = \Omega(n^2). \]
 \[\downarrow \]
 \[\sum_{k=1}^{n} k = \Theta(n^2) \]

- Precise \textbf{(proof by induction)!}:

 - Basis: \(n = 1 \Rightarrow \frac{\sum_{k=1}^{1} k}{n(n+1)} = \frac{1}{2} = 1 \)

 - Induction:
 Assume it holds for \(n \): \(\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \)
 Show it holds for \(n+1 \): \(\sum_{k=1}^{n+1} k = \frac{(n+1)(n+2)}{2} = \frac{1}{2}n^2 + \frac{3}{2}n + 1 \)

 Proof:

 \[
 \sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + (n + 1) \\
 = \frac{n(n+1)}{2} + (n + 1) \\
 = \frac{1}{2}n^2 + \frac{1}{2}n + n + 1 \\
 = \frac{1}{2}n^2 + \frac{3}{2}n + 1
 \]

 In general we can prove that \(\sum_{k=1}^{n} k^d = \Theta(n^{d+1}) \)
Another important sum: \[\sum_{k=0}^{n} x^k = 1 + x + x^2 + \cdots + x^n = \frac{x^{n+1}-1}{x-1} = O(x^n) \] (Geometric series)

- Proof by induction:
 - Basis: \(n = 1 \Rightarrow \sum_{k=0}^{1} x^k = 1 + x \)
 \[\frac{x^{n+1}-1}{x-1} = \frac{(x+1)(x-1)}{x-1} = x + 1 \]
 - Induction:

 Assume holds for \(n \): \(\sum_{k=0}^{n} x^k = \frac{x^{n+1}-1}{x-1} \)
 Show it holds for \(n + 1 \): \(\sum_{k=0}^{n+1} x^k = \frac{x^{n+2}-1}{x-1} \)

 Proof:
 \[
 \sum_{k=0}^{n+1} x^k = \sum_{k=0}^{n} x^k + x^{n+1}
 = \frac{x^{n+1}-1}{x-1} + x^{n+1}
 = \frac{x^{n+1} - 1 + x^{n+1}(x - 1)}{x - 1}
 = \frac{x^{n+1} - 1 + x^{n+2} - x^{n+1}}{x - 1}
 = \frac{x^{n+2} - 1}{x - 1}
 \]

- Asymptotic (we don’t need to know result to do induction!):

 Consider for example that we want to prove that \(\sum_{k=0}^{n} 3^k = O(3^n) \), that is, that \(\sum_{k=0}^{n} 3^k \leq c3^n \) for some \(c \).

 - Basis: \(n = 1 \Rightarrow \sum_{k=0}^{1} 3^k = 1 + 3 = 4 \)
 Ok if \(c > 4/3 \)
 - Induction:

 Assume holds for \(n \): \(\sum_{k=0}^{n} 3^k \leq c3^n \)
 Show holds for \(n + 1 \): \(\sum_{k=0}^{n+1} 3^k \leq c3^{n+1} \)

 Proof:
 \[
 \sum_{k=0}^{n+1} 3^k = \sum_{k=0}^{n} 3^k + 3^{n+1}
 \leq c3^n + 3^{n+1}
 = c3^{n+1}(1/3 + 1/c)
 \leq c3^{n+1}
 \]

If \(1/3 + 1/c < 1 \) which holds if \(c > 3/2 \)

Another important sum: \[\sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} = O(\log n) \] (Harmonic Series)
2 Recurrences

- Last time we discussed divide-and-conquer algorithms

<table>
<thead>
<tr>
<th>Divide and Conquer</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Solve P:</td>
</tr>
<tr>
<td>1. Divide P into smaller problems $P_1, P_2, P_3, ..., P_k$.</td>
</tr>
<tr>
<td>2. Conquer by solving the (smaller) subproblems recursively.</td>
</tr>
<tr>
<td>3. Combine solutions to $P_1, P_2, ..., P_k$ into solution for P.</td>
</tr>
</tbody>
</table>

- Analysis of divide-and-conquer algorithms leads to recurrences.

- Merge-sort lead to the recurrence $T(n) = 2T(n/2) + n$

 - or rather, $T(n) = \begin{cases} \Theta(1) & \text{If } n = 1 \\ T(\lceil \frac{n}{2} \rceil) + T(\lfloor \frac{n}{2} \rfloor) + \Theta(n) & \text{If } n > 1 \end{cases}$

 - but we will often cheat and just solve the simple formula (equivalent to assuming that $n = 2^k$ for some constant k, and leaving out base case and constant in Θ).

2.1 Substitution method

- Idea: Make good guess and prove by induction.

- Lets solve $T(n) = 2T(n/2) + n$ using substitution

 - Guess $T(n) \leq cn \log n$ for some constant c (that is, $T(n) = O(n \log n)$)

 - Proof:

 * Basis: Function constant for small constant n
 * Induction:

 Assume holds for $n/2$: $T(n/2) \leq c_{\frac{n}{2}} \log \frac{n}{2}$

 Show holds for n: $T(n) \leq cn \log n$

 Proof:

 $$T(n) = 2T(n/2) + n \leq 2(c_{\frac{n}{2}} \log \frac{n}{2}) + n = cn \log \frac{n}{2} + n = cn \log n - cn \log 2 + n = cn \log n - cn + n$$

 So ok if $c \geq 1$

- $T(n) = \Omega(n \log n)$ can be proved similarly.

- How do we make a good guess?

 - Something of an art!

 - Try different bounds (e.g. $\Omega(n)$ easy, show $O(n^2)$ \Rightarrow guess $O(n \log n)$)
• Note: changing variables can sometimes help

 – Example: Solve \(T(n) = 2T(\sqrt{n}) + \log n \)

 Let \(m = \log n \Rightarrow 2^m = n \Rightarrow \sqrt{n} = 2^{m/2} \)
 \(T(n) = 2T(\sqrt{n}) + \log n \Rightarrow T(2^m) = 2T(2^{m/2}) + m \)

 Let \(S(m) = T(2^m) \)
 \(T(2^m) = 2T(2^{m/2}) + m \Rightarrow S(m) = 2S(m/2) + m \)
 \(\Rightarrow S(m) = O(m \log m) \)
 \(\Rightarrow T(n) = T(2^m) = S(m) = O(m \log m) = O(\log n \log \log n) \)

• Next time we will discuss another method for solving recurrences.