Lecture 5: Master Method and Quick-Sort
(CLRS 4.3-4.4 (read this note instead), 7.1-7.2)

January 24, 2002

1 Master Method (recurrences)

- We have solved several recurrences using substitution and iteration.
- Last time we solved several recurrences of the form $T(n) = aT(n/b) + n^c$ ($T(1) = 1$).
 - Strassen’s algorithm $\Rightarrow T(n) = 7T(n/2) + n^2$ ($a = 7, b = 2, \text{ and } c = 2$)
 - Merge-sort $\Rightarrow T(n) = 2T(n/2) + n$ ($a = 2, b = 2, \text{ and } c = 1$).
- It would be nice to have a general solution to the recurrence $T(n) = aT(n/b) + n^c$.
- We do!

| $T(n)$ | $\left\{ \begin{array}{l}
\text{if } n \leq 1 \\
\Theta(n^\log_b a) \\
\Theta(n^c) \\
\end{array} \right.$ |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$a \geq 1, b \geq 1, c > 0$</td>
<td>$a > b^c$</td>
</tr>
<tr>
<td>$a \leq b^c$</td>
<td></td>
</tr>
</tbody>
</table>

Proof (Iteration method)

$$
T(n) = aT\left(\frac{n}{b}\right) + n^c
= n^c + a\left(\left(\frac{n}{b}\right)^c + aT\left(\frac{n}{b}\right)\right)
= n^c + \left(\frac{a}{b^c}\right) n^c + a^2 T\left(\frac{n}{b^c}\right)
= n^c + \left(\frac{a}{b^c}\right) n^c + a^2 \left(\left(\frac{a}{b^c}\right)^c + aT\left(\frac{n}{b^c}\right)\right)
= n^c + \left(\frac{a}{b^c}\right) n^c + a^2 \left(\left(\frac{a}{b^c}\right)^c + a^3 T\left(\frac{n}{b^c}\right)\right)
= \ldots
= n^c + \left(\frac{a}{b^c}\right) n^c + \left(\frac{a}{b^c}\right)^2 n^c + \left(\frac{a}{b^c}\right)^3 n^c + \ldots + \left(\frac{a}{b^c}\right)^{\log_b n - 1} n^c + \left(\frac{a}{b^c}\right)^{\log_b n} T(1)
= n^c \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^c}\right)^k + n^{\log_b n}
= n^c \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^c}\right)^k + n^{\log_b a}
$$

Recall geometric sum $\sum_{k=0}^{n} x^k = \frac{x^{n+1}-1}{x-1} = \Theta(x^n)$

- \(a < b^c\)
 - $a < b^c \iff \frac{a}{b^c} < 1 \Rightarrow \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^c}\right)^k \leq \sum_{k=0}^{\infty} \left(\frac{a}{b^c}\right)^k = \frac{1}{1-(\frac{a}{b^c})} = \Theta(1)$
 - $a < b^c \iff \log_b a < \log_b b^c = c$
 - $T(n) = n^c \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^c}\right)^k + n^{\log_b a}$
 - $T(n) = n^c \cdot \Theta(1) + n^{\log_b a}$
 - $T(n) = \Theta(n^c)$
\[a = b^c \]

\[
a = b^c \iff a \frac{c}{b} = 1 \implies \sum_{k=0}^{\log_b n-1} \left(\frac{a}{b^c} \right)^k = \sum_{k=0}^{\log_b n-1} 1 = \Theta(\log_b n)
\]

\[
a = b^c \iff \log_b a = \log_b b^c = c
\]

\[
T(n) = \sum_{k=0}^{\log_b n-1} \left(\frac{a}{b^c} \right)^k + n^\log_b a
\]

\[
= n^c \Theta(\log_b n) + n^\log_b a
\]

\[
= \Theta(n^c \log_b n)
\]

\[a > b^c \]

\[
a > b^c \iff \frac{a}{b^c} > 1 \implies \sum_{k=0}^{\log_b n-1} \left(\frac{a}{b^c} \right)^k = \Theta \left(\left(\frac{a}{b^c} \right)^\log_b n \right) = \Theta \left(\frac{a^\log_b n}{b^c \log_b n} \right) = \Theta \left(\frac{a^\log_b n}{n^c} \right)
\]

\[
T(n) = n^c \cdot \Theta \left(\frac{a^\log_b n}{n^c} \right) + n^\log_b a
\]

\[
= \Theta(n^\log_b a) + n^\log_b a
\]

\[
= \Theta(n^\log_b a)
\]

Note: Book states and proves the result slightly differently (don’t read it).

1.1 Other recurrences

Some important/typical bounds on recurrences not covered by master method:

- Logarithmic: \(\Theta(\log n) \)
 - Recurrence: \(T(n) = 1 + T(n/2) \)
 - Typical example: Recurse on half the input (and throw half away)
 - Variations: \(T(n) = 1 + T(99n/100) \)

- Linear: \(\Theta(N) \)
 - Recurrence: \(T(n) = 1 + T(n - 1) \)
 - Typical example: Single loop
 - Variations: \(T(n) = 1 + 2T(n/2), T(n) = n + T(n/2), T(n) = T(n/5) + T(7n/10 + 6) + n \)

- Quadratic: \(\Theta(n^2) \)
 - Recurrence: \(T(n) = n + T(n - 1) \)
 - Typical example: Nested loops

- Exponential: \(\Theta(2^n) \)
 - Recurrence: \(T(n) = 2T(n - 1) \)

2 Quick-sort

- We previously saw how divide-and-conquer can be used to design sorting algorithm—Merge-sort
 - Partition \(n \) elements array \(A \) into two subarrays of \(n/2 \) elements each
 - Sort the two subarrays recursively
 - Merge the two subarrays

Running time: \(T(n) = 2T(n/2) + \Theta(n) \implies T(n) = \Theta(n \log n) \)
• Another possibility is to used the “opposite” version of divide-and-conquer—Quick-sort

 – Partition $A[1..n]$ into subarrays $A' = A[1..q]$ and $A'' = A[q+1..n]$ such that all elements in A'' are larger than all elements in A'.

 – Recursively sort A' and A''.

 – (nothing to combine/merge. A already sorted after sorting A' and A'')

If $q = n/2$ and we divide in $\Theta(n)$ time, we again get the recurrence $T(n) = 2T(n/2) + \Theta(n)$ for the running time $\Rightarrow T(n) = \Theta(n \log n)$

The problem is that it is hard to develop partition algorithm which always divide A in two halves

• Pseudo code for Quick-sort:

  ```
  QUICKSORT(A, p, r)
  IF $p < r$ THEN
    q = PARTITION(A, p, r)
    QUICKSORT(A, p, q - 1)
    QUICKSORT(A, q + 1, r)
  FI
  ```

Sort using QUICKSORT(A, 1, n)

  ```
  PARTITION(A, p, r)
  x = A[r]
  i = p - 1
  FOR $j = p$ TO $r - 1$ DO
    IF $A[j] \leq x$ THEN
      $i = i + 1$
      Exchange $A[i]$ and $A[j]$
    FI
  OD
  Exchange $A[i + 1]$ and $A[r]$
  RETURN $i + 1$
  ```

• PARTITION runs in time $\Theta(n)$
• Correctness:

 – Clear if Partition divides correctly

 – Example:

 \[
 \begin{array}{ccccccc}
 2 & 8 & 7 & 1 & 3 & 5 & 6 & 4 \\
 2 & 8 & 7 & 1 & 3 & 5 & 6 & 4 \\
 2 & 8 & 7 & 1 & 3 & 5 & 6 & 4 \\
 2 & 8 & 7 & 1 & 3 & 5 & 6 & 4 \\
 2 & 1 & 3 & 8 & 7 & 5 & 6 & 4 \\
 2 & 1 & 3 & 8 & 7 & 5 & 6 & 4 \\
 2 & 1 & 3 & 4 & 7 & 5 & 6 & 8 \\
 \end{array}
 \]

 \(i=0, j=1\)

 \(i=1, j=2\)

 \(i=1, j=3\)

 \(i=1, j=4\)

 \(i=2, j=5\)

 \(i=3, j=6\)

 \(i=3, j=7\)

 \(i=3, j=8\)

 \(q=4\)

 – Partition can be proved correct (by induction) using the loop invariant:

 * \(A[k] \leq x\) for \(p \leq k \leq i\)
 * \(A[k] > x\) for \(i+1 \leq k \leq j-1\)
 * \(A[k] = x\) for \(k = r\)

• Running time depends on how well Partition divides \(A\).

 – In the example it does reasonably well.

 – In the worst case \(q\) is always \(p\) and the running time becomes \(T(n) = \Theta(n) + T(1) + T(n-1) \Rightarrow T(n) = \Theta(n^2)\).

 * and what is maybe even worse, the worst case is when \(A\) is already sorted.

• So why is it called "quick"-sort? Because it "often" performs very well—can we theoretically justify this?

 – Even if all the splits are relatively bad, we get \(\Theta(n \log n)\) time:

 * Example: Split is \(\frac{9}{10}n, \frac{1}{10}n\).

 \[
 T(n) = T(\frac{9}{10}n) + T(\frac{1}{10}n) + n
 \]

 Solution?

 Guess: \(T(n) \leq cn \log n\)

 Induction

 \[
 T(n) = T(\frac{9}{10}n) + T(\frac{1}{10}n) + n
 \leq \frac{9cn}{10} \log(\frac{n}{10}) + \frac{cn}{10} \log(\frac{n}{10}) + n
 \leq \frac{9cn}{10} \log n + \frac{9cn}{10} \log(\frac{9n}{10}) + \frac{cn}{10} \log n + \frac{cn}{10} \log(\frac{1}{10}) + n
 \leq cn \log n + \frac{9cn}{10} \log 9 - \frac{9cn}{10} \log 10 - \frac{cn}{10} \log 10 + n
 \leq cn \log n - n(c \log 10 - \frac{9c}{10} \log 9 - 1)
 \]

 \(T(n) \leq cn \log n\) if \(c \log 10 - \frac{9c}{10} \log 9 - 1 > 0\) which is definitely true if \(c > \frac{10}{\log 10}\)
– So, in other words, if just the splits happen at a constant fraction of n we get $\Theta(n \lg n)$—or, its almost never bad!

- Next time we will further justify the good practical performance by looking at average case running time.