Lecture 7: Linear Time Selection
(CLRS 9)

January 31, 2002

1 Quick-Sort Review

- The last two lectures we have considered Quick-Sort:
 - Divide $A[1...n]$ (using \textsc{Partition}) into subarrays $A' = A[1..q - 1]$ and $A'' = A[q + 1...n]$ such that all elements in A'' are larger than $A[q]$ and all elements in A' are smaller than $A[q]$.
 - Recursively sort A' and A''.
- We discussed how split point q produced by \textsc{Partition} only depends on last element in A
- We discussed how randomization can be used to get good expected partition point.
- Analysis:
 - Best case ($q = n/2$): $T(n) = 2T(n/2) + \Theta(n) \Rightarrow T(n) = \Theta(n \log n)$.
 - Worst case ($q = 1$): $T(n) = T(1) + T(n - 1) + \Theta(n) \Rightarrow T(n) = \Theta(n^2)$.
 - Expected case for randomized algorithm: $\Theta(n \log n)$

2 Selection

- If we could find element e such that rank(e) = $n/2$ (the median) in $O(n)$ time we could make quick-sort run in $\Theta(n \log n)$ time worst case.
 - We could just exchange e with last element in A in beginning of \textsc{Partition} and thus make sure that A is always partition in the middle
- We will consider a more general problem than finding the i'th element:
 - Selection problem

\begin{center}
\textbf{Select}(i) is the i'th element in the sorted order of elements
\end{center}
- Note: We do not require that we sort to find \textbf{Select}(i)
- Note: Select(1) = minimum, Select(n) = maximum, Select(n/2) = median
• Special cases of Select(i)

 – Minimum or maximum can easily be found in $n - 1$ comparisons
 * Scan through elements maintaining minimum/maximum

 – Second largest/smallest element can be found in $(n - 1) + (n - 2) = 2n - 3$ comparisons
 * Find and remove minimum/maximum
 * Find minimum/maximum

 – Median:
 * Using the above idea repeatedly we can find the median in time $\sum_{i=1}^{n/2} (n - i) = \frac{n^2}{2} - \sum_{i=1}^{n/2} i = \frac{n^2}{2} - (n/2 \cdot (n/2 + 1))/2 = \Theta(n^2)$
 * We can easily design $\Theta(n \log n)$ algorithm using sorting

• Can we design $O(n)$ time algorithm for general i?

• If we could partition nicely (which is what we are really trying to do) we could solve the problem

 – by partitioning and then recursively looking for the element in one of the partitions:

 \[
 \text{SELECT}(A, p, r; i)
 \]

 \[
 \begin{align*}
 \text{IF } p = r \text{ THEN RETURN } A[p] \\
 q = \text{PARTITION}(A, p, r) \\
 k = q - p + 1 \\
 \text{IF } i \leq k \text{ THEN} \\
 \quad \text{RETURN SELECT}(A, p, q, i) \\
 \text{ELSE} \\
 \quad \text{RETURN SELECT}(A, q+1, r, i-k)
 \end{align*}
 \]

 Select i'th elements using $\text{SELECT}(A, 1, n, i)$

 – If the partition was perfect ($q = n/2$) we have

 \[
 T(n) = T(n/2) + n \\
 = n + n/2 + n/4 + n/8 + \cdots + 1 \\
 = \sum_{i=0}^{\log n} \frac{n}{2^i} \\
 = n \cdot \sum_{i=0}^{\log n} \left(\frac{1}{2}\right)^i \\
 \leq n \cdot \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^i \\
 = \Theta(n)
 \]
Note:
* The trick is that we only recurse on one side.
* In the worst case the algorithm runs in $T(n) = T(n - 1) + n = \Theta(n^2)$ time.
* We could use randomization to get good expected partition.
* Even if we just always partition such that a constant fraction ($\alpha < 1$) of the elements are eliminated we get running time $T(n) = T(\alpha n) + n = n \sum_{i=0}^{\log n} \alpha^i = \Theta(n)$.

- It turns out that we can modify the algorithm and get $T(n) = \Theta(n)$ in the worst case
 - The idea is to find a split element q such that we always eliminate a fraction of the elements:

    ```
    SELECT(i)
    * Divide $n$ elements into groups of 5
    * Select median of each group ($\Rightarrow \lceil \frac{n}{5} \rceil$ selected elements)
    * Use SELECT recursively to find median $q$ of selected elements
    * Partition all elements based on $q$

    \[ \begin{array}{c}
    \text{q} \\
    \text{k} \\
    \text{n-k}
    \end{array} \]

    * Use SELECT recursively to find $i$'th element
      - If $i \leq k$ then use SELECT($i$) on $k$ elements
      - If $i > k$ then use SELECT($i - k$) on $n - k$ elements
    ```

- If n' is the maximal number of elements we recurse on in the last step of the algorithm the running time is given by $T(n) = \Theta(n) + T(\lceil \frac{n}{5} \rceil) + \Theta(n) + T(n')$

- Estimation of n':
 - Consider the following figure of the groups of 5 elements
 * An arrow between element e_1 and e_2 indicates that $e_1 > e_2$
 * The $\lceil \frac{n}{5} \rceil$ selected elements are drawn solid (q is median of these)
 * Elements $> q$ are indicated with box
- Number of elements $> q$ is *larger* than $3(\frac{1}{2}\left\lfloor \frac{n}{5} \right\rfloor - 2) \geq \frac{3n}{10} - 6$
 * We get 3 elements from each of $\frac{1}{2}\left\lfloor \frac{n}{5} \right\rfloor$ columns except possibly the one containing q and the last one.
- Similarly the number of elements $< q$ is *larger* than $\frac{3n}{10} - 6$
 \[\downarrow \]
 We recurse on at most $n' = n - (\frac{3n}{10} - 6) = \frac{7}{10}n + 6$ elements

- So Selection(i) runs in time $T(n) = \Theta(n) + T(\left\lfloor \frac{n}{5} \right\rfloor) + T(\frac{7}{10}n + 6)$

- Solution to $T(n) = n + T(\left\lfloor \frac{n}{5} \right\rfloor) + T(\frac{7}{10}n + 6)$:
 - Guess $T(n) \leq cn$
 - Induction:

 \[
 T(n) = n + T(\left\lfloor \frac{n}{5} \right\rfloor) + T(\frac{7}{10}n + 6)
 \leq n + c \cdot \left\lfloor \frac{n}{5} \right\rfloor + c \cdot (\frac{7}{10}n + 6)
 \leq n + c \cdot \frac{n}{5} + c + \frac{7}{10}cn + 6c
 = \frac{9}{10}cn + n + 7c
 \leq \frac{9}{10}cn
 \]

 If $7c + n \leq \frac{1}{10}cn$ which can be satisfied (e.g. true for $c = 20$ if $n > 140$)
- Note: It is important that we chose every 5th element, not all other choices will work (homework).