Lecture 8: Sorting Lower Bound and Radix-Sort
(CLRS 8.1-8.3)

February 5, 2002

1 Comparison model sorting lower bound

- We have seen two $\Theta(n \log n)$ sorting algorithms: Merge-sort and quick-sort (using median selection)
- These algorithms only use comparisons to gain information about the input.
- We will prove that such algorithms have to do $\Omega(n \log n)$ comparisons
- To prove bound, we need formal model

Decision tree

- Binary tree where each internal node is labeled $a_i \leq a_j$ (a_i is the i'th input element)
- Execution corresponds to root-leaf path
 - at each internal node comparisons $a_i \leq a_j$ is performed and branching made
- Leaf contains result of computation

- Example: Decision tree for sorting 3 elements.

- a leaf contains permutation giving sorted order.

- Note: Decision tree model corresponds to algorithms where
 - Only comparisons can be used to gain knowledge about input
 - Data movement, control, etc, are ignored
- Worst case number of comparisons performed corresponds to maximal height of tree \Rightarrow lower bound on height \Rightarrow lower bound on sorting
Theorem: Any decision tree sorting n elements has height $\Omega(n \log n)$

Proof:
- Assume elements are the (distinct) numbers 1 through n
- There must be $n!$ leaves (one for each of the $n!$ permutations of n elements)
- Tree of height h has at most 2^h leaves

$$2^h \geq n! \Rightarrow h \geq \log(n!)$$

$$= \log(n(n-1)(n-2) \cdots 2)$$

$$= \log n + \log(n-1) + \log(n-2) + \cdots + \log 2$$

$$= \sum_{i=2}^{n} \log i$$

$$= \sum_{i=2}^{n/2-1} \log i + \sum_{i=n/2}^{n} \log i$$

$$\geq 0 + \sum_{i=n/2}^{n} \log \frac{n}{2}$$

$$= \frac{n}{2} \cdot \log \frac{n}{2}$$

$$= \Omega(n \log n)$$

2 Beating sorting lower bound (bucket sort)

- While proving the $\Omega(n \log n)$ comparison lower bound we assumed that the input were integers 1 through n
- We can easily sort integers 1 through n in $O(n)$ time.
 - just move element i to position i in output array

\[
\begin{array}{cccccccc}
4 & 7 & 6 & 2 & 5 & 3 & 10 & 9 & 1 & 8 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\end{array}
\]

- What about the more general problem of sorting n elements in range 1,...,k?
 - Move element i to linked list of element i
 - Produce sorted output
• Algorithm uses $O(n + k)$ time and space

• Note:
 – We did not use comparison at all!
 – We beat the $\Omega(n \log n)$ bound by using values of elements to index into array—Indirect addressing

• Note:
 – Algorithm is stable (Order of equal elements maintained)
 – Algorithm is not in-place (more than $O(n)$ space use)—All other sorting algorithms we have seen have been in-place

• Note:
 – Book calls the algorithm (or simplified version of it) counting sort and use bucket sort for something else
 – I call it bucket sort (we put elements in buckets)

3 Radix Sort

• Problem with bucket sort is that k can be very large
 – Example: 32 bit integers $\Rightarrow k = 2^{32} \approx 10^9 \Rightarrow$ space used is $10^9 \cdot 4$ bytes ≈ 4Gbytes!

• Large k result in running time not proportional to n (and other problems like disk swapping)

3.1 MSD Radix-sort

• MSD Radix-sort regards numbers as being made up of digits
 – Bucket sort by most significant digit (MSD)
 – Recursively sort buckets with more than one element (according to next digit)

• Correctness is straightforward (Induction)

• Example: Sorting numbers < 1000 ($k = 1000$) using 10 buckets
• Problem with MSD radix sort
 – We need to keep track of a lot of recursion (buckets)
 – Many buckets ⇒ space use
• Advantages of MSD radix sort
 – We only need to look at distinguishing prefix (what we need to look at)

3.2 LSD Radix-sort
• LSD Radix-sort:
 – Sort by least significant digit (LSD)
 – Sort by second least significant digit (using a stable sorting algorithm)
 – Sort by most significant digit (using a stable sorting algorithm)
• Correctness again by induction
• Example:

<table>
<thead>
<tr>
<th>329</th>
<th>0: 720</th>
<th>720</th>
<th>0:</th>
<th>720</th>
<th>0:</th>
</tr>
</thead>
<tbody>
<tr>
<td>457</td>
<td>1: 355</td>
<td>2: 720,329</td>
<td>2:</td>
<td>329</td>
<td>2:</td>
</tr>
<tr>
<td>839</td>
<td>4: 457</td>
<td>4: 436,457</td>
<td>4:</td>
<td>436,457</td>
<td>4:</td>
</tr>
</tbody>
</table>

• Problems with LSD Radix-sort:
 – We look at all the numbers in all phases
 – Not generally in-place ($n < 10$)

3.3 In-place Radix-sort
• To get in-place algorithm we simply choose number of buckets equal n in radix sort
 – In example, we had $n = 7$ and 10 buckets
• When doing so we divide the numbers in ranges of n
 – In example, we divided in ranges of 10
• If numbers are $\leq R$ the number of phases i is $n^i = R \Rightarrow i = \frac{\log R}{\log n}$
 – In example, we had $R = 839$, $10^3 > 839 \Rightarrow 3$ phases
 \[\downarrow \]
• $O(n)$ space and $O(n \cdot \frac{\log R}{\log n})$ time
• Note: When is in-place Radix-sort better than $1 \cdot n \log n$ sort (for 32 bit integers)?

- $n \cdot \frac{32}{\log n} < n \log n \Rightarrow \log^2 n > 32 \Rightarrow n > 2^{\sqrt{32}}$
- $2^{\sqrt{32}} < 2^6 = 64$

• Note: Recent algorithm by Anderson et al. (1997) combines advantages of MSD and LSD radix sort

 - In-place
 - Only look at distinguishing prefix