
50 LAWRENCE LESSIG

50

4
Open Source Baselines:

Compared to What?

Lawrence Lessig

Software is the set of instructions that makes a computer
run. Programmers or coders write these instructions. The
instructions then get translated into a form that computers

can understand. The product of the initial authoring is called
source code; the product of the translation is called object code.
Humans write source code; machines run object code. Well-
trained humans can read and understand source code;
superhumans and computers read and process object code.

When software is distributed, the distributor makes a choice
about whether the distribution will include both the source and
object code. “Proprietary software” refers to distributions of soft-
ware that include just the object, or binary, code. “Open source
and free software” refers to distributions of software that include
both the object and source code. With proprietary software, the
consumer receives a program that he or she can run. With open
source or free software, the consumer receives a program that he
can run, modify, and—depending upon the license under which
the program is received—redistribute. Proprietary software is
like Kentucky Fried Chicken. Open source and free software
is like Kentucky Fried Chicken sold with the “original secret
recipe” printed in bold on the box.

04 3393-3 chap4.p65 11/12/2002, 6:53 AM50

OPEN SOURCE BASELINES 51

And thus here lies the puzzle: by distributing the source code
with the object code, open source and free software developers
give their competitors free access to any value that they might
have added to the software they are distributing. A developer
thus cannot capture that value for him- or herself, but rather
gives at least a part of it away. How then can developers have
sufficient incentive to innovate? What motivates them to de-
velop in this way? How can developers sustain the costs of
development if they must hand to their competitors all the value
they have created?

My aim here is to disentangle this puzzle. Open source and
free software have played an important part in the growth of
the Internet. The puzzle about their existence comes from a
mistaken baseline of comparison. Properly understood, these
movements are completely consistent with a tradition of inno-
vation and development outside the context of software. They
may seem unique within the software industry, but they are
not unique against the background of development or innova-
tion generally.

Using this appropriate baseline for comparison, the follow-
ing discussion develops an account of the social value of open
source and free software. This account, in turn, supports an ar-
gument in favor of the government adopting and supporting
open source and free software projects.

Open Source and Free Software Defined

To the extent that there is sustained opposition to open source
and free software, that opposition is targeted and quite narrow.
Microsoft has been the most vocal opponent of a particular fla-
vor of open source and free software development, an opposi-
tion that is subtle and, properly understood, specific.1 But
understanding this opposition and its relatively narrow scope
requires a bit of background about the nature of free and open
source software. And understanding the countervailing ben-
efits from free and open source software in turn requires a bit of

04 3393-3 chap4.p65 11/12/2002, 6:53 AM51

52 LAWRENCE LESSIG

background about the relationship between software and what
economists call “public goods.”

The Nature of Open Source and Free Software. Open source
and free software give consumers and the public something more
than proprietary software does: the ability to tinker and modify.
Such software gives the public the benefit of the information
contained within the code. Yet open source and free software
don’t provide these values by forfeiting public law protection.
Open source and free software are not “in the public domain.”
Copyrights still attach to their creative content. Thus copyright
law continues to control how this content can be used and dis-
tributed. Open source and free software producers use this con-
trol to impose conditions upon the use of their code. These
conditions vary significantly depending upon whether the code
is free or open source. But these conditions are not options. They
are requirements imposed by the force of law.

Not all software-related content is protected in this way. There
are important software related products that are within the pub-
lic domain. The TCP/IP (Transmission Control Protocol/Internet
Protocol), for example, which forms the basic protocols of the
Internet, is in the public domain. Anyone is free to implement it
without the permission of a copyright holder. This enabled many
to build TCP/IP networks inexpensively and ensured that no
one had the power to control how TCP/IP would develop.

But being in the public domain also means that TCP/IP could
in principle be hijacked. A major producer of TCP/IP technol-
ogy could extend the protocol in a way that benefits its own
interests and weakens its competitors. It could do this because
the nature of the public domain is that anyone is free to build as
they wish. HTML (Hypertext Markup Language) is an example
of a protocol that was in the public domain. Netscape and
Microsoft each tried to extend the protocol in ways that ben-
efited its own implementation.2 This competition may or may
not have been beneficial to the spread of the World Wide Web.
But whether or not it was, hijacking was possible because the
underlying protocol was not protected.

04 3393-3 chap4.p65 11/12/2002, 6:53 AM52

OPEN SOURCE BASELINES 53

By staying outside the public domain, open source and free
software at least have the potential to protect themselves against
the hijacker. Using copyright law, they have the power to re-
quire certain conditions before their code is used in ways that
implicate the exclusive rights protected by copyright law. Thus,
like proprietary software, open source and free software depend
upon copyright; like proprietary software, open source and free
software make themselves available only under certain condi-
tions. The important difference among these three forms of soft-
ware is simply the difference in conditions.

Proprietary software is made available upon the payment of
a price (which sometimes is zero). In exchange for a price, the
user ordinarily licenses the object code. Object code, because
it is compiled into a form that is effectively opaque to humans,
does not transmit the information it contains; it is simply a
machine that induces another machine to function in a par-
ticular way. But attached to that machine is a license supported
by copyright law. That license sets the terms according to which
one may use the licensed machine. In the ordinary proprietary
model, you are not permitted to sell the code you have licensed,
nor are you permitted to modify and redistribute it. Propri-
etary code gives you the right to use the machine you’ve li-
censed, just like a rental from Hertz gives you the right to use
the car you’ve leased.

Open source and free software impose different conditions
upon users. And while the variety of open source and free soft-
ware licenses is broad, we can identify essentially two sorts:
copylefted software and noncopylefted software.3

Copylefted software is software that is licensed under terms
that require follow-on users to require others to adopt the same
license terms for work derived from the copylefted code. The
principle is “share and share alike.” Noncopylefted open source
software imposes no such condition on subsequent use. With
copylefted software, the price of admission is that if you redis-
tribute modified versions of the copylefted code, you must re-
distribute it under similar license terms; with noncopylefted
software, no such price is demanded.

04 3393-3 chap4.p65 11/12/2002, 6:53 AM53

54 LAWRENCE LESSIG

The most famous example of copylefted code is the GNU/
Linux operating system.4 GNU/Linux is licensed under the GNU
General Public License (GPL). The GPL requires that anyone
who modifies and redistributes GPL-covered code do so under a
GPL license.5 For example, if an enterprising coder modified
Linux to run seamlessly Windows and Macintosh programs, he
would be free to redistribute that modified GNU/Linux only if
he did so under a GPL license. And since a GPL license also
requires that the source code of a GPL work be made available
for free, this Linux innovator would likely face competition from
copycat competitors. If the coder had in fact produced an oper-
ating system that could run programs from other operating
systems directly, then many would likely take it and sell it in
competition with him. The GPL guarantees that “freedom.”

It is for this reason that some argue that the copyleft require-
ment is too steep a price for developers to pay.6 The freedom of a
single developer to build a cross-platform-compatible version of
Linux, for example, might well be defeated by the copyleft con-
dition (assuming that the costs of such a project are extremely
high and that the developer would need to recover those costs
from the sale of copies of the resulting operating system). But
this condition is not necessarily any more expensive than the
conditions imposed by proprietary code. If our Linux developer
wanted to create a modified, cross-platform-compatible version
of Windows, he would be no more free to redistribute the result-
ing Microsoft code than he would be free to distribute the modi-
fied Linux code under the GPL. If he could get the permission
of Microsoft at all, no doubt he would have to pay a high price.
The difference then is not that one licensing system imposes
burdens while the other does not; the difference is in the nature
of the burdens.

Noncopylefted open source software does not impose this
condition on subsequent licensing. Not only is a user free to
build upon it, but it also does not require that such building be
released under similar licensing terms. The Apache web server
is an example of this kind of software. Apache is an open source

04 3393-3 chap4.p65 11/12/2002, 6:53 AM54

OPEN SOURCE BASELINES 55

server, the most widely used web server in the world.7 Anyone is
free to download and modify the source code for the Apache
server. And because Apache is not copylefted, anyone can take
the source code and build it into his own software project. There
is nothing in the Apache license that would prohibit a company
from taking the Apache code, compiling it, and then selling the
resulting server as a proprietary product (so long, at least, as it
was not called “Apache”). These distinctions are mapped in
figure 4-1.

No doubt, from a private perspective, the differences among
these types of software are important. As you move from left to
right on the chart, the ability of coders to capture the value of
what they code increases. It doesn’t follow, of course, that the
income coders receive necessarily increases the further to the

Figure 4-1. Categories of Software

Proprietary“Open/Free”Public
domain

Start

Copyrighted?

TCP/IP Non-
copylefted Copylefted Windows

Apache GNU/Linux

Quicken

04 3393-3 chap4.p65 11/12/2002, 6:53 AM55

56 LAWRENCE LESSIG

right they place their code, for the terms of the license could
well affect the value of the software to others. One percent of a
million is greater than 100 percent of a thousand. But as you
move to the right, the legal right of coders to extract the full
value from their code certainly does improve.

From the perspective of the public, however, another differ-
ence is significant. To understand this difference, however, re-
quires a bit more explanation about the economics of software.

Software and Public Goods. As discussed above, software is a
set of organized instructions for making a computer function.
These instructions are written first in source code, which is then
compiled into object code. The source code is understandable
by the humans who write it; the object code is understandable
by computers.8 The product of these writings—a digital object
stored on a hardware device—can then be copied at almost no
cost. With the emergence of powerful networks, it can also be
distributed at almost no cost.

This means that to some degree software has the attributes of
“public goods.”9 A public good is not just any good that benefits
the public. Food is a good that benefits the public; it is not a
public good. As economists define the term, a public good is a
resource that is both nonrivalrous and nonexcludable. It is
nonrivalrous if your consumption of the resource does not re-
duce the amount available to me. It is nonexcludable if there is
no feasible way to block you from consuming the resource once
it is made available to me. National defense is the classic public
good. Whatever level of spending the government provides for
national defense, my consumption of national defense does not
reduce the amount available to you. And if the nation is prop-
erly defended, I get that benefit whether or not I have contrib-
uted to its supply.10

Goods can be mixed—possessing both public and private at-
tributes. Software is an example: it can be produced as a purely
private good, but it can also be produced in a way that promotes
certain public goods. These public goods might be divided be-

04 3393-3 chap4.p65 11/12/2002, 6:53 AM56

OPEN SOURCE BASELINES 57

tween pure and “qualified” public goods. The information about
how a program works—how it achieves its functionality—that
is contained within its source code is a pure public good. If made
available generally, then my consumption of that knowledge
would leave as much for you as before. If made available gener-
ally, then it would be hard to exclude my knowledge of it to the
extent that knowledge is known generally.

In contrast, the digital copy of a particular software product
could be considered a qualified public good, meaning simply
that it requires some resources in order to be obtained. My
having a copy of your program doesn’t interfere with your hav-
ing a copy of your program. But it may take resources to pro-
duce that copy of your program. Likewise, an unprotected
digital copy can be made available to all if it is made available
to some, but it takes resources to move that content (the cost
of electricity to run the network, for example). As modern digi-
tal technologies reduce these necessary resources to zero, this
means in effect that software can be made available just as eas-
ily as a pure public good.11

The economics of public goods is, of course, well developed.
If, following Elinor Ostrom, we distinguish between the provi-
sion of a public good and its consumption, then neoclassical eco-
nomics tells us that social welfare is maximized if an already
existing public good gets consumed at a price equal to its mar-
ginal cost of production.12 That doesn’t mean an economic sys-
tem should require that its price be its marginal cost. If public
goods could earn no more than their marginal cost of produc-
tion, there would be an insufficient incentive to produce at least
some public goods. If all the good that Microsoft produced by
producing Windows XP could be immediately expropriated by
every Microsoft wannabe at the marginal cost of producing a
copy of Windows XP, then there’d be little incentive for Microsoft
to build many of its products. If every song that Britney Spears
recorded could be distributed to others for free, there’d be little
incentive for Britney Spears to record as she does. With these
public goods at least, solving the consumption problem (by

04 3393-3 chap4.p65 11/12/2002, 6:53 AM57

58 LAWRENCE LESSIG

making the goods available at zero marginal cost) creates a pro-
vision problem (by not creating enough return to support the
incentive to create). Thus to maintain incentives to produce,
such public goods require a way to defeat at least part of their
own nature as public goods. In other words, what is needed is a
way to make at least these public goods rivalrous or excludable,
so that a price above the marginal cost can be collected.13

The law has long provided a device to achieve precisely this
end—intellectual property. Intellectual property gives authors
the right to control the distribution of copies of their work. That
right balances the public goods character that writing makes
manifest. The law levels the playing field for the publisher by
giving authors the exclusive right to copies of their original work.
Then de jure the work becomes rivalrous and excludable.

Software developers, however, have tools beyond intellectual
property law that they can deploy to balance the public goods
nature of software. Proprietary software providers, for example,
can add excludability to their software by never releasing its
source code: by compiling the source code and distributing just
its object code, they can make the information within the prod-
uct effectively excludable. Compilation makes the source code
secret, and secrecy adds to the providers’ ability to recover value.

Software providers can also make software effectively rival-
rous. Copy protection technologies, for example, can make par-
ticular copies of software exclusive to particular owners.
Properly deployed, these technologies can make it effectively
impossible for you to use my software when I am using it. This
again makes it easier for the producer to recover the value of
his production by eliminating another public goods aspect of
the digital product.

Thus two sets of tools—one public, the other private—are
available to the software provider for balancing (or defeating)
the public goods character of code. These tools in turn overlap.
An author doesn’t have to choose between copy protection tech-
nologies and copyright or between compiled code and law—he
gets both.14 And by combining both kinds, a producer will get

04 3393-3 chap4.p65 11/12/2002, 6:53 AM58

OPEN SOURCE BASELINES 59

more value and will, to some extent and in some contexts, in-
crease the incentive to produce.

Yet at some point, the combination of this public and pri-
vate protection may reduce, rather than increase, social wel-
fare—at least if the protection is too strong. These protections
raise the price of information above its marginal cost of pro-
duction. This means less information is being distributed than
is economically efficient. Economics resents a price above mar-
ginal cost. Any gap may be a necessary evil to induce produc-
tion, but as with all necessary evils, it should be tolerated only
so far as it is truly necessary. A gap may be justified by the need
to solve the provision problem, but if the controls extend be-
yond the justification, they reduce social welfare. Some con-
trol is needed, but some control is far less than perfect control.
And hence the problem of social policy is how best to balance
a necessary evil against access to information at its marginal
cost—that is, free.15

These familiar ideas are presented here to remind us of a point
that is too often forgotten in the debate about open source and
free software: the strong bias of public policy should be to spread
public goods at their marginal cost. Compromises are no doubt
necessary if private actors are to contribute voluntarily to the
production of public goods; but public entities, such as govern-
ments, should not indulge in these compromises unless they are
necessary. Between two systems for producing a public good,
one that releases the information produced by that good freely
and one that does not, all things being equal, public policy should
favor free access. This is not because of some egalitarian bias or
because of ideals about social equality but for purely neoclassi-
cal economic reasons: free access brings the cost of information
down to its marginal cost, and neoclassical economics favors
price at marginal costs. If the problems of incentives have al-
ready been solved for a particular good or class of goods—no
doubt a large assumption, but for some important software goods
a true one—then there is no further reason to exclude access
to the public goods produced.16 Or if the provision problem is

04 3393-3 chap4.p65 11/12/2002, 6:53 AM59

60 LAWRENCE LESSIG

sufficiently solved by other systems of incentive, then again there
is no reason to exclude the public goods produced.

From a social perspective, this means that there is a difficult
choice between these two forms of production. If social good is
the sum of private and public goods, then we cannot pick be-
tween open and proprietary software in the abstract. On the one
hand, open source and free software dominate proprietary soft-
ware in spreading a public good. Yet on the other hand, if there
is insufficient incentive to produce software under the open
source and free software models, then the private good from soft-
ware will also be underproduced.

When society faces a difficult social choice, that is usually a
good reason to let both forms of production compete in the
market. And thus no one sensible is calling for a requirement
that all software be free or that free software be banned. Yet some
do argue against open source and free software, sometimes mo-
tivated by a belief that its business model is a failure and some-
times motivated by a view that at least some forms of free software
are dangerous to “software ecology.”

The economics of open source and free software is just begin-
ning to be understood. A growing body of literature increas-
ingly demonstrates how individuals could have sufficient private
incentive to solve the provision problem, even though they can-
not capture the full value of what they produce.17 The aim here
is not to comment upon that work within economics proper but
rather to clear the way for the lessons that economics is increas-
ingly offering in the realm of public policy.

The following section connects the practice of open source
and free software development to other more familiar instances
of production. That link in turn will make open source develop-
ment more familiar. It may well be that proprietary software
maximizes the private return from software creation (though even
that is questioned by some). But it does not follow that propri-
etary production is the only form of production that provides
sufficient incentives for individuals and corporations to con-
tribute to its supply. In this case, as in many others, an imperfect
ability to capture the value of innovation does not necessarily

04 3393-3 chap4.p65 11/12/2002, 6:53 AM60

OPEN SOURCE BASELINES 61

destroy the incentive to innovate. And more important, increas-
ing the ability to capture the value of innovation does not neces-
sarily increase the incentive to innovate.18

Parallels

The system of production that produces open source and free soft-
ware is not an exception within a free society. Properly under-
stood, it stands on a continuum with production in most
competitive fields. It is instead proprietary software that is outside
the norm: its system of production is the exception, not the rule.

This positive claim does not entail negative implications for
proprietary code. Its intent is rather to challenge a common as-
sumption regarding open source or free software: that it is an
exception within a free market, more akin to communism than
capitalism. This view is mistaken.

Open source and free software are systems of production that
mix private resources with those in a commons to produce goods
or services of economic value. The production function thus
includes both private and public goods, where the labor used to
produce new code is a private good, and the information used to
build upon the free software is public. The innovation and util-
ity that this software produces benefits both the creator and the
public. The producer captures some—but not all—of the value
he or she produces.

Viewed in this way, it is easy to see that most production in a
free market is structured in precisely the same way. Think about
a coffee shop that opens across the street from Starbucks. It gets
to draw upon lots of resources held in common—knowledge
about how to attract customers, a taste for coffee, a taste for high-
priced coffee—even though many of these resources might be
directly attributable to Starbucks. Though Peet’s Coffee claims
to be older, it was certainly Starbucks that created the American
norm for high-priced coffee.19 That norm is certainly of value to
Starbucks’ competitors, but we don’t therefore automatically
assume that Starbucks has a claim to the value produced by this
norm. There’s no general principle within a free market that says

04 3393-3 chap4.p65 11/12/2002, 6:53 AM61

62 LAWRENCE LESSIG

that every quantum of value produced is the property of the
entity that produced it. The value that Starbucks gets to reap
from its innovation in coffee sales is just the amount it can make
in the free market. As economists have long taught, the amount
a business such as Starbucks makes in the market is a function
of the demand for its product, the marginal cost of production,
and competition. These may or may not equal the total value
that Starbucks has contributed, but neoclassical economics was
born with the insight that value received is not necessarily equiva-
lent to the value produced.

Or consider a second example that is more familiar to the
lawyer.20 Think about the system of production called legal liti-
gation services. Lawyers involved in litigation write texts to be
submitted to courts; courts in response produce other texts that
are published and made available to the greater society. The texts
within this system are creative works (some more creative than
others), but they are all fully available for others to draw upon
and copy.21 Opinions of judges can be used without the permis-
sion of the court; arguments from appellate briefs are fair game
for others to use later on. All these resources are “free resources”
in just the sense that free and open source software produces
free resources. But none would conclude from this that lawyers
are underpaid or that the legal system does not provide adequate
incentives to lawyers. Instead the task of the lawyer is to mix
new work with these existing resources to produce a result that
benefits the client. The lawyer is paid for this mixing, even though
the value of the mix is available for others to take.

The vast majority of coding in software projects has precisely
the same character. As James Bessen has argued, most coding is
customization—fitting existing resources to new uses.22 Those
who customize generate a product that is tailored to a particular
user. Ordinary contract law gives the customizer adequate power
to ensure a return to support that customization. Software cod-
ers in general are better off if there is a great deal of free software
for them to draw upon. As with lawyers, there is no good that
comes from forcing everyone to reinvent the wheel. And thus

04 3393-3 chap4.p65 11/12/2002, 6:53 AM62

OPEN SOURCE BASELINES 63

there is a public benefit if customizers contribute their work
into a commons while also being paid for their particular
customization.

These anecdotes point to a more general truth that, as Will-
iam Baumol has quantified it, the vast majority of the value of
innovation in a free market is not captured by the innovator. In
other words, most of the value “spills over” into the market gen-
erally. And while sometimes reducing spillover will increase the
efficiency of the market, as Baumol has argued, this assumption
is not always correct. Sometimes the spillover is efficient.23

None of this is meant to argue that every software project
should be open or free. Nor does it follow that lawyers should
be unable to protect particular forms of their craft. My point is
to show the ordinariness of systems of production where the
producer does not fully capture the value he produces. That sys-
tem is the norm in a free society. We call it a free market. It is not
“theft” each time it is realized, and when it is realized, it can
induce public benefit.

An example of this social benefit is seen today in the context
of embedded systems.24 As technologists find ways to build com-
puters into every device around us, they need an operating sys-
tem to run those computers. The free operating system of GNU/
Linux is the overwhelmingly dominant operating system de-
ployed in these embedded systems. This is for obvious reasons.
An embedded system producer wants to minimize costs, which
include both the acquisition costs of software and the mainte-
nance or debugging costs of that software. Because the GNU/
Linux operating system is free, the acquisition costs are low, and
because many people have had an opportunity to debug the sys-
tem, its reliability is extremely high. Thus the GNU/Linux oper-
ating system is an inexpensive and valuable resource for the
embedded systems market. Without this inexpensive resource,
the embedded market would not have experienced such a high
degree of growth.

Others have suggested that there are more systematic benefits
accruing to open source or free software projects.25 As James

04 3393-3 chap4.p65 11/12/2002, 6:53 AM63

64 LAWRENCE LESSIG

Bessen has argued, the costs of debugging complex projects such
as software are so high that an open source project will often be
able to bear those costs better than a proprietary project.26 No
doubt in many cases this claim is correct, as are other claims
about the private benefit that open source or free software projects
enjoy relative to proprietary projects. These are reasons why open
source or free software projects could have a competitive advan-
tage over proprietary projects.

Whether they have an advantage or not, however, my point is
more modest. The phenomenon of open source coding is just
one instance of a more general and familiar mode of production.
Like most innovation within a free society, innovators cannot
capture all the value they produce. The only relevant difference
with open source and free software is that it chooses this “imper-
fection” whereas the others may not have any choice.27

Lessons

Finally, there is the question of government’s attitude toward
open source or free software. There has been a trend in many
countries for the government to insist that its agencies use open
source or free software. France, Germany, and China have re-
cently announced such policies.28 This, in turn, has pushed many
in the United States to argue for the opposite. David Evans, for
example, argues against governments favoring open source or
free software in their purchasing decisions.29 Microsoft, too, has
argued against developing nations adopting GNU/Linux.30

Evans maintains that the government should make decisions
about whether to adopt open source or free software in the same
way as private actors should: the only question it should ask is
what software maximizes efficiency.31 I agree with his principle,
but we must be careful about how it is applied to the particulars of
the case, because the factors that determine efficiency for govern-
ments are fundamentally different from the factors that determine
efficiency for private actors. Governments are not competitors in
the sense that private actors are. They have a greater interest in
externalizing benefits that other competitors might share.

04 3393-3 chap4.p65 11/12/2002, 6:53 AM64

OPEN SOURCE BASELINES 65

Consider, for example, a government that is funding the de-
velopment of an email system for its employees. That others could
use the same code within the government if it were open source
or free software would be one reason for the government to use
such software to develop its system. Its code will produce a ben-
efit for other governmental actors. All things being equal, that
benefit should weigh in favor of the open source over propri-
etary code.

The same is true at the platform level. If the choice of a plat-
form produces a positive externality for others within the gov-
ernment, this is a reason, all things considered, for the
government to choose the software producing that externality.
This is, for example, the argument used most commonly in fa-
vor of the government purchasing Windows as its base operat-
ing system. Uniformity throughout the government has its
benefits. But it would also be beneficial to have uniformity at a
platform level that was open. My point is simply that such ben-
efits should be accounted for by the government as well.

Microsoft has questioned the propriety of government funding
development of software covered by the GPL. In a series of public
statements, the company has opposed the government’s “support”
for “free software,” meaning software licensed under the GPL.32

As explained earlier, open source software is not licensed under
the GPL. Thus, Microsoft’s argument says nothing about whether
the government should adopt, for example, Apache web servers.
The only target of Microsoft’s attack is the GPL.

Microsoft’s arguments are understandable, though how far they
extend is hard to know. Microsoft argues that software licensed
under the GPL has a “viral” tendency, as modifications to that
software must themselves be licensed under the GPL. This means
that some companies (in particular, some proprietary producers
of software) are unable to use GPL code. This, in turn, could
mean that projects operating under a GPL would become un-
available to companies such as Microsoft. GPL-based projects
would therefore be developed and worked on only by GPL-
friendly enterprises, which, Microsoft argues, could reduce the
incentive to develop software.

04 3393-3 chap4.p65 11/12/2002, 6:53 AM65

66 LAWRENCE LESSIG

At a formal level, one might well make the same charge against
the government funding the development of proprietary soft-
ware.33 After all, if the government funds a proprietary software
project, only the company owning or licensing the copyrights
can participate in further development of that software. Other
companies without access to the proper permissions are banned
from developing this software. So just like Microsoft’s claims
about GPL software, these companies are precluded from par-
ticipating in proprietary-software-based projects. By a parity
of reasoning, it would therefore follow that the government
should not fund proprietary projects either. By this line of rea-
soning, the only software projects the government should fund
would be those that produce code in the public domain or un-
der licenses similar to the dominant open source licenses, such
as Apache.

As an argument about fairness, this ultimate conclusion might
well have some force. But as an argument of efficiency, it doesn’t
quite work. If the test the government applies is which software
benefits the government most at a given price, then it is not clear
why the fact that it would exclude some private companies from
developing that software should, on its own, matter. It could
under certain assumptions matter, but in the abstract, it is hard
to see just why the licensing choices of potential competitors
should constrain the government in its choice of code.

Properly calibrated, then, government neutrality could well
entail a preference for open or free software, depending on the
program and the interests involved. More specifically, between
two products, open source and proprietary, of comparable
strength, there is a reason for the government to prefer an open
source version. And between two products, free and proprietary,
of comparable strength, there may even be a reason for the gov-
ernment to prefer the free software. This conclusion would not
always follow, but it would follow for a wide range of code that
today is not open source or free software.

There is a second type of neutrality that governments should
also consider. This touches the question of software patents.34

04 3393-3 chap4.p65 11/12/2002, 6:54 AM66

OPEN SOURCE BASELINES 67

There is not the space here to consider the full range of argu-
ments surrounding the software patent debate. In my view, the
debate shows conclusively that while there are clear costs to
innovation imposed by software patents, there is no good evi-
dence that they provide a sufficiently strong countervailing
benefit.

The costs of patents, however, are significantly greater for open
source and free software projects than they are for proprietary
projects. The transaction costs of licensing are higher with open
source and free software; the ability to license a patent is there-
fore decreased. This means that a system with software patents
is biased against open source and free software. That bias might
be justified if there were any strong indication that software pat-
ents do any good. But with the evidence pointing the other way,
this is a clear example of partiality in which the government
should not engage. Models of software development should be
allowed to compete; the government should not allow bloated
intellectual property regimes to tilt the field of competition against
one of the most vibrant competitors.

Conclusion

There is a reason for public policy to prefer a world where soft-
ware is open and free. That reason cannot trump all other con-
siderations, and it alone does not support a general rule that
would banish proprietary code. But the reason does motivate an
inquiry into whether free and open source code can be adequately
produced. Economists have just begun a formal inquiry into that
question. That inquiry could be helped with a bit of perspective:
by seeing the parallel between open source and free software
production and other more familiar modes of production, we
are more likely to accept the conclusion of economists that open
code is often possible and often very valuable.

I have argued in favor of government neutrality regard-
ing open and proprietary software—as long as the interests the

04 3393-3 chap4.p65 11/12/2002, 6:54 AM67

68 LAWRENCE LESSIG

government reckons are sufficiently broad. If they are, then
the government will often arrive at the conclusion that open
code is preferable to proprietary code. At the very least, such
an approach would lead to the conclusion that the government
should not allow software patents to tilt the competitive hori-
zon against open code projects.

04 3393-3 chap4.p65 11/12/2002, 6:54 AM68

the Reiser File System is sponsored primarily by the Defense Advanced Re-
search Projects Agency (DARPA) and will be licensed under the GPL. For fur-
ther details, see Evans and Reddy, “Government Preferences for Promoting
Open-Source Software.”

44. For example, the Patent and Trademark Law Amendments Act (also
known as the Bayh-Dole Act) of 1980 encouraged universities and small busi-
nesses to commercialize inventions by permitting exclusive licensing of intel-
lectual property that was developed with public funding. In exchange for the
right to elect title to an invention, the licensor must agree to properly manage
the invention and provide reports to the government. Since the passage of Bayh-
Dole, universities have increasingly set up technology transfer programs and
actively patented and commercialized inventions. See Council of Government
Relations, “The Bayh-Dole Act: A Guide to the Law and Implementing Regula-
tions,” September 1999 (www.cogr.edu/bayh-dole.htm [May 20, 2002]).

45. For further discussion, see Evans and Reddy, “Government Preferences
for Promoting Open-Source Software.”

46. See presentation by James Bessen at the AEI-Brookings Joint Center for
Regulatory Studies Conference “Is Open Source the Future of Software?” Wash-
ington, D.C., April 12, 2002.

Chapter 4
Open Source Baselines:

Compared to What?

1. For example, Craig Mundie argues that General Public License soft-
ware—as distinct from open source software—may lead to the “forking” of
the code base (hence causing incompatibility), weakened interoperability, prod-
uct instability, problematic strategic planning for business leaders, and the
risk of forcing intellectual property into the public domain. Craig Mundie, “The
Commercial Software Model,” remarks at the Stern School of Business, New
York University (www.microsoft.com/presspass/exec/craig/05-03sharedsource.asp
[August 2002]).

2. “In the heat of their Hatfield-McCoy feud, Microsoft and Netscape have
taken HTML hostage. Each company is proposing incompatible ways to extend
the Web’s lingua franca, exposing us to the danger that we’ll soon have two
different dialects.” See Jesse Berst, “Microsoft, Netscape Feud Puts HTML’s Fu-
ture at Risk,” April 11, 1997 (www.zdnet.com/anchordesk/story/story_827.html
[August 2002]).

3. See Richard Stallman, “What Is Copyleft?” (www.fsf.org/copyleft/
copyleft.html [August 2002]); Teresa Hill, “Fragmenting the Copyleft Move-
ment: The Public Will Not Prevail,” Utah Law Review (1999), p. 797.

4. See generally Richard Stallman, “Linux and the GNU Project”
(www.gnu.org/gnu/linux-and-gnu.html [August 2002]).

NOTES TO PAGES 47–54 99

06 3393-3 notes.p65 11/12/2002, 6:52 AM99

5. There is an important quibble about what “modifies” means. The Free
Software Foundation sometimes seems to suggest that any change in GPL-cov-
ered code would be a derivative work, thereby subject to copyright regulation.
For a discussion of the derivation of subsequent distribution of a modified work
as a form of original work versus the derivative work itself, see David McGowan,
“Legal Implications of Open-Source Software,” Illinois Law Review (2001), p. 254.

6. See, for example, Bjørn Reese and Daniel Stenberg, “Working without
Copyleft,” December 19, 2001 (www.oreillynet.com/pub/a/policy/2001/12/12/
transition.html [August 2002]). The authors explain their feelings of repulsion
for the GPL because, in its fear of corporate exploitation, it is uncooperative
and has an overly extensive scope that becomes a deterrent to development.

7. “Apache soon became the number one server in the world. To this day,
two-thirds of the servers on the World Wide Web are Apache servers.” Lawrence
Lessig, The Future of Ideas (Random House, 2001), pp. 55–56. See also David A.
Wheeler, “Why Open Source Software/Free Software? Look at the Numbers!”
(www.dwheeler.com/oss_fs_why.html [August 2002]).

8. “Source code is the code that programmers write. It is close to a natural
language, but not quite a natural language. A program is written in source
code, but to be run it must be converted into a language the machine can
read. Some source code is converted on the fly—BASIC, for example, is usu-
ally interpreted by the computer as the computer runs a BASIC program. But
most source code—or the most powerful source code—is ‘compiled’ before it
is run. The computer converts the source code into either assembly code (which
mavens can read) or object code (which only geniuses and machines can read).
Object code is machine-readable. It is an undifferentiated string of 0s and 1s
that instructs the machine about the tasks it is to perform. Programmers do
not directly write object code, even if some are able to decipher it; program-
mers write source code. Object code speaks to the computer; source code
speaks to humans and to computers (compilers); assembly code speaks to
mavens and computers.” See Lawrence Lessig, Code and Other Laws of Cyber-
space (Basic Books, 1999), p. 103.

9. For a general introduction to public goods, see the discussion of com-
mon pool resources in Elinor Ostrom, Governing the Commons: The Evolution of
Institutions for Collective Action (Cambridge University Press, 1990). She ex-
plores the nonexcludable nature of public goods via the thought-experiment of
the grazing field “open to all,” allowing unfettered access to all interested graz-
ers (pp. 2–3). She also explains that, even in scenarios where excludability may
be achieved, it is nevertheless practically impossible, since the costs of exclud-
ing others are prohibitive (pp. 30–33). As to the nonrivalrous nature of public
goods, see Ostrom (p. 30) for a brief introduction to the notion of practically
nonrivalrous public goods (allowance for maximal allocation of goods with no
significant depletion of those goods for others), and see Lessig, Future of Ideas,
pp. 20–23. (Language, for example, is a perfectly nonrivalrous public good,
since your use of it doesn’t impede mine.)

100 NOTES TO PAGES 54–56

06 3393-3 notes.p65 11/12/2002, 6:52 AM100

10. Ostrom, Governing the Commons, chap. 3. As Ostrom demonstrates, it
doesn’t follow that every public good requires state intervention for it to be
supplied. Nor does it follow that every public good needs to be “privatized” for
it to be supplied.

11. According to Yochai Benkler, “A commons-based information policy re-
lies on the observation that some resources that serve as inputs for information
production and exchange have economic or technological characteristics that
make them susceptible to be allocated without requiring that any single organi-
zation, regulatory agency or property owner, clear conflicting uses of the re-
source. For example, the nonrivalrous nature of information, and the perfect
renewability of radio frequency spectrum, create the possibility of sustainable
commons in information used as an input into new information production,
and in the RF spectrum, respectively.” Benkler, “The Commons as a Neglected
Factor of Information Policy,” paper presented at the Twenty-sixth Annual Tele-
communications Policy Research Conference, Alexandria, Va., October 1998
(www.law.nyu.edu/benklery/ [August 2002]). James Boyle describes the emerg-
ing quandary of how to entice development and creativity of information in the
context of increasingly “free, complete, instantaneous, and universally available
. . . information flows that are costless, general, and fast.” Boyle, Shamans, Soft-
ware, and Spleens (Harvard University Press, 1996), p. 35. David McGowan
notes that “the low cost of copying and using code combined with the broad
grants of the relevant licenses creates a situation that resembles a commons in
some respects.” McGowan, “Legal Implications,” p. 244.

According to the UN secretary general’s Millennium Report (p. 159): “[T]he
core product in this sector—information—has unique attributes, not shared by
others. The steel used to construct a building, or the boots worn by the workers
constructing it, cannot be consumed by anyone else. Information is different.
Not only is it available for multiple uses and users, it becomes more valuable the
more it is used. The same is true of the networks that link up different sources
of information.” Reprinted in “Information as Global Public Good: A Right to
Knowledge and Communication,” Oxfam International Campaign Proposal 2000
(http://danny.oz.au/free-software/advocacy/oicampaign.html [August 2002]).
From the viewpoint of one venture capitalist, “Put simply, in a world where
there are essentially no costs to replicate content and it is effectively impossible
to stop anyone from doing so at will, the current economic model underpin-
ning content creation [including code writing] will be dead.” See Dan Kohn,
“Content Is a Pure Public Good” (http://db.tidbits.com/getbits.acgi?tbart=06604
[August 2002]). Finally, writing for the UN Food and Agriculture Organiza-
tion, Bernard Woods advocates the transformation of digital technologies, in-
cluding software and other facilitative technologies, from potential public goods
into public goods in an almost traditional sense, that is, provided and guaran-
teed by governmental entities in a manner similar to utilities or a lighthouse. “A
Public Good, a Private Responsibility” (www.fao.org/waicent/faoinfo/sustdev/
dodirect/doengb02.htm [August 2002]).

NOTES TO PAGES 56–57 101

06 3393-3 notes.p65 11/12/2002, 6:52 AM101

12. See William M. Landes and Richard A. Posner, “An Economic Analysis of
Copyright Law,” Journal of Legal Studies, vol. 18, no. 2 (1989), pp. 325–63.
Landes and Posner put forth an economic analysis of how the law may facilitate
the maximally efficient design and enforcement of copyright law, stipulating
that “for copyright law to promote economic efficiency, its principal legal doc-
trines must, at least approximately, maximize the benefits from creating addi-
tional works minus both the losses from limiting access and the costs of
administering copyright protection.”

13. See Kenneth J. Arrow, “Economic Welfare and the Allocation of Resources
for Invention,” in Richard R. Nelson, ed., The Rate and Direction of Inventive
Activity (National Bureau of Economic Research and Princeton University Press,
1962), p. 609. For a more recent discussion of Arrow’s analysis, see Gillian K.
Hadfield, “The Economics of Copyright: An Historical Perspective,” ASCAP
Copyright Law Symposium, no. 38 (1992), pp. 39–40. Hadfield states that “when
a resource is indivisible, the marginal cost of increasing the quantity available is
zero; optimal allocation therefore requires that it be distributed at a price of
zero. Yet clearly if price equals zero, then the fixed cost of producing the re-
source will not be covered by the market. . . . As in the case of ordinary public
goods, information is underproduced to the extent that price is reduced to zero
away from the average cost of its production.”

14. However, tools to defeat some of the public goods aspects of software
cannot eliminate them. There is certainly plenty of software piracy, despite the
mix of public and private tools to protect against improper use.

15. “Once the work is created, the author’s efforts can be incorporated into
another copy virtually without cost.” See Landes and Posner, “An Economic
Analysis,” p. 327.

16. This does not mean that there is always, or even often, a line dividing the
necessary from the not. But where there has been protection sufficient to in-
duce the production of a certain good, at least the terms of that protection
should not be extended. See brief of “17 Economists” as amici curiae in support
of petitioners to the Supreme Court of the United States, Eldred v. Ashcroft
(www.eldred.cc/legal/supremecourt.html [August 2002]).

17. Most of the commentary on free and open source software has been “fo-
cused on explaining the rationale behind growing participation in this move-
ment.” See Siobhan Clare O’Mahony, “The Emergence of a New Commercial Actor,”
Ph.D. dissertation, Stanford University, 2002, p. 52, citing Josh Lerner and Jean
Tirole, “The Simple Economics of Open Source,” Working Paper W7600 (Cam-
bridge, Mass.: National Bureau of Economic Research, 2002). See also Justin Pappas
Johnson, “Economics of Open Source Software,” working paper, May 17, 2001
(http://opensource.mit.edu/papers/johnsonopensource.pdf [August 2002]).

18. As William Baumol writes, “Individuals who have invested directly or
indirectly in the economy’s innovation processes can be estimated, conserva-
tively, to obtain less than 10% of the total economic benefits contributed by new
technology and new products.” Baumol, “Pareto Optimal Sizes of Innovation

102 NOTES TO PAGES 57–61

06 3393-3 notes.p65 11/12/2002, 6:52 AM102

Spillovers” (www.econ.nyu.edu/user/baumolw/inovspi1.htm [August 2002]).
Baumol’s work is consistent with the extensive research of Eric von Hippel track-
ing the source of innovation in a wide range of contexts. As von Hippel has
demonstrated, there are many contexts beyond software where innovation is
provided by innovators who do not recover the value of the innovation. See
Eric von Hippel, “Horizontal Innovation Networks—by and for Users” (http://
opensource.mit.edu/papers/vonhippel3.pdf [August 2002]).

19. According to their websites, Peet’s Coffee opened in Berkeley in 1966,
while Starbucks opened in Seattle in 1971.

20. For a more skeptical view of this comparison, see Mathias Strasser, “A
New Paradigm in Intellectual Property Law? The Case against Open Sources,”
Stanford Technology Law Review (2001), p. 4, para. 80.

21. See Carolyn Elefant, “Do Not Copy That Brief,” Legal Times Intellectual
Property Magazine, May 7, 2001 (www.his.com/~israel/loce/press.html [August
2002]). Elefant argues that although legal briefs appear to satisfy the criteria
traditionally demanded of copyrightable material (such as originality, inclusion
in statutorily identified categories of the Copyright Act, fixation in tangible
medium), whether lawyers may expect or should want briefs to be copyright-
able is due further thought. For example, she argues that even if they are copy-
rightable, there are massive enforcement hurdles, and tightening of access to
briefs may damage research interests and decrease quality of legal briefs.

22. “Conventional markets work very well where the commodities are well
defined, where the demand and the nature of the customer’s need are well de-
fined, and where the property rights or contractual relationships are well de-
fined. But software is not typically a standardized commodity. Packaged software
has never represented as much of a third of all software investment in the United
States. Open source is thus in some sense a better business model because it’s
easier to customize.” James Bessen, remarks at the AEI-Brookings Joint Center
for Regulatory Studies conference “Is Open Source the Future of Software?”
April 12, 2002 (www.aei.brookings.org/events/page.php?id=59#bessen).

23. Baumol, “Pareto Optimal Sizes of Innovation Spillovers.”
24. See www.linuxlinks.com/embedded/.
25. For a brief summary, see David S. Evans, “Is Free Software the Wave of

the Future?” Milken Institute Review, 4th quarter (2001), pp. 38–39. The most
significant reason for commercial entities to support open or free software projects
is that they keep the cost of complements low. IBM sells hardware; if it can keep
the cost of operating systems low, that will increase the demand for its hard-
ware. See Lessig, Future, pp. 69–70.

26. See James Bessen, “Open Source Software: Free Provision of Complex
Public Goods,” ROI Working Paper, July 2002 (www.researchoninnovation.org/
online.htm). For the argument that peer pressure increases quality in open sys-
tems, see Harlan D. Mills, “Top-down Programming in Large Systems,” in Randall
Rustin, ed., Debugging Techniques in Large Systems (Englewood Cliffs, N.J.:
Prentice Hall, 1971).

NOTES TO PAGES 61–64 103

06 3393-3 notes.p65 11/12/2002, 6:52 AM103

27. My argument is consistent with a point long made by Eric von Hippel:
firms that give users the opportunity to innovate upon their product do better
in the market than those that do not. This gives firms a reason to support a kind
of open source development, and this open source development is supported by
innovators who never capture the full value of their innovation. See Eric von
Hippel, “Customers as Innovators: A New Way to Create Value,” Harvard Busi-
ness Review, vol. 80, no. 4 (2002), p. 74.

28. For details on French policy, see “France towards Open e-Government—
Government Agency to Enforce Open Standards and Promote Open Source/
Free Software,” November 21, 2001 (http://old.lwn.net/2001/1129/pr/
pr4501.php3 [August 2002]). On Germany, see David McHugh, “German Gov-
ernment Signs Deal With IBM,” AP Wire Service, June 3, 2002 (www.radicus.net/
news/wed/cx/agermany-linux.rb-t_cu3.asp). On China, see Andy Tai, “Taiwan
to Start National Plan to Push Free Software,” June 3, 2002 (www.kuro5hin.org/
story/2002/6/3/55433/41738 [August 2002]).

29. See David S. Evans and Bernard Reddy, “Government Preferences for
Promoting Open-Source Software: A Solution in Search of a Problem,” working
paper (Cambridge, Mass.: National Economic Research Associates, May 21, 2002)
(http://ssrn.com/abstract_id=313202 [August 2002]). This paper is a careful and
extraordinarily complete analysis of the issue. While it asserts that I have ar-
gued that open source and free software is “innovative” (p. 64), in fact I have
not made any claim about whether the software itself is innovative. My claim is
that the platform it helped build produced innovation. Evans and Reddy collect
a wide range of reasons why the government might, from an economic perspec-
tive, prefer open source or free software. They have not included the reasons
provided here.

30. Mundie, “The Commercial Software Model.”
31. “With respect to procurement, I would run the government like a busi-

ness.” See David Evans, remarks at the AEI-Brookings Joint Center for Regula-
tory Studies conference “Is Open Source the Future of Software?” April 12,
2002 (www.aei.brookings.org/events/page.php?id=59#evans).

32. Mundie, “The Commercial Software Model.” Microsoft makes an inde-
pendent point about the potential “danger” of GPL licensed for other intellec-
tual property owned by the software developer. See also www.microsoft.com/
sharedsource.

33. Evans and Reddy make a similar argument against the government fund-
ing GPL-covered software. Evans and Reddy, “Government Preferences,” pp. 74–
76. They note that the government has traditionally funded research that either
goes into the public domain or is used by the military or is spun off for commer-
cial purposes (p. 75). But when the government funds research that produces
GPL-covered software, Evans and Reddy contend that “there is no economic jus-
tification for this support of the GPL.” Their argument is in essence that “support
of GPL projects is incompatible with commercial spin-off efforts, since the GPL is
incompatible with proprietary, commercial software” (p. 76).

104 NOTES TO PAGES 64–66

06 3393-3 notes.p65 11/12/2002, 6:52 AM104

There are many unstated assumptions built into this argument. First, to say
that the GPL is “incompatible with proprietary, commercial software” is not to
say it is “incompatible with commercial spin-off efforts.” There are plenty of
commercial firms that develop and support GPL software—IBM to name just
one. No doubt GPL-covered code is not a resource for “proprietary, commercial
software” development, to the extent that development modifies and redistrib-
utes GPL-covered code. But again, there is plenty of proprietary, commercial
software development that need not modify and redistribute GPL-covered code,
such as GNU/Linux, just as there is plenty of proprietary, commercial software
development that need not modify and redistribute Windows XP.

Second, this argument takes the commercialization of government-funded re-
search as the baseline and measures “economic justification” against that. But
there is no argument for this baseline. Certainly the government funds lots of
research that passes into the public domain. Evans and Reddy have not provided
an argument against that. To the extent innovation passes into the public domain,
it may or may not be less exploitable by commercial entities. It was a concern
about a lack of incentives to exploit resources that lead to the passage of the Bayh-
Dole Act, permitting the patenting of government-funded research. The effect of
that act on research has been extremely controversial; for example, see Arti Kaur
Rai, “Regulating Scientific Research: Intellectual Property Rights and the Norms
of Science,” Northwestern University Law Review, vol. 94 (1999), pp. 136–37. But
unless there is some reason to reject supporting research for the public domain,
there cannot be a general, economic reason to reject supporting research for the
GPL. The only general argument is the one Microsoft seems to be making. But
this again would apply to government support of proprietary software develop-
ment as much as government support of GPL software development.

34. See Lessig, Future, pp. 206–14.

Chapter 5
The Future of Software:

Enabling the Marketplace to Decide

1. Although these views are often associated with the Free Software Foun-
dation and its founder, Richard Stallman, strands of this thinking can be found
throughout the open source community.

2. This topic is discussed in more detail in a subsequent section. “GNU” is
a recursive acronym that stands for “GNU’s Not UNIX.” The acronym reflects
the original purpose of the GNU Project, which was to develop a “free” alterna-
tive to the UNIX operating system. See Richard Stallman, The GNU Project
(www.gnu.org [2002]).

3. For a description of the BSD license and similar licenses as “permissive,”
see Sean Doherty, “The Law and Open Source Software,” Network Computing,
October 29, 2001.

NOTES TO PAGES 64–73 105

06 3393-3 notes.p65 11/12/2002, 6:52 AM105

