
Compsci 290/Mobile, Java

Owen Astrachan
Landon Cox

January 16, 2018

1/16/2018 Mobile 290, Spring 2018, Java 1

Java Classes and Objects
• Class encapsulates state and behavior
• State is typically private
• Android uses mInstanceVar convention

• Class is an object factory
• Calling new creates a new instance
• Everything in Java is a pointer/reference

1/16/2018 Mobile 290, Spring 2018, Java 2

Classes and Objects
• Classes communicate and collaborate
• Parameters: use-a, send and receive
• Containment: has-a, aggregate or responsible
• Inheritance: is-a, extends, specializes

• Inheritance and interfaces
• More on this throughout semester, especially

at beginning

1/16/2018 Mobile 290, Spring 2018, Java 3

Tell Don't Ask
● Tell objects what you want them to do, do not

ask questions about state, make a decision, then
tell them what to do

(Pragmatic Programmers, LLC)

• Think declaratively, not procedurally
• Don't ask for a map, then walk through the map
• Instead of iteration, apply to all

• Breaks when we don't want to apply to all
● Rules are made to be broken
• Reduce coupling, better code

1/16/2018 Mobile 290, Spring 2018, Java 4

Law of Demeter
• Don't talk to objects, don't call methods. The

more you talk, the more you rely on
something that will break later
• Call your own methods
• Call methods of parameter objects
• Call methods if you create the object

• Do NOT call methods on objects returned by
calls
List all = obj.getList();
all.addSpecial(key,getValue());
obj.addToList(key,getValue()); // ok here

1/16/2018 Mobile 290, Spring 2018, Java 5

Open Closed Principle
• Classes and Programs will be changed …
• Open to extension
• Closed to modification

• What does this mean?
• If not modified, don't need to be re-tested on a

Unit testing basis
• Extension can be by design, by language

features

1/16/2018 Mobile 290, Spring 2018, Java 6

Loose Coupling
• We want classes to be loosely coupled
• Independent of each other in that they interact

via APIs
• Changes in one class have minimal impact on

other classes except via APIs and those should
be changed infrequently

• Applications and programs change
• Minimize the "ripple" effect through the system

1/16/2018 Mobile 290, Spring 2018, Java 7

High Cohesion
• Classes capture one abstraction
• Create more classes when you need them, don't

be a class miser or misanthrope (word abuse)

• Keep things simple, strive for simplicity
• Don't use Swiss-army knife approach, one tool for

one purpose

• Loose coupling and high cohesion, goals for
programming

1/16/2018 Mobile 290, Spring 2018, Java 8

Design Patterns
“... describes a problem which occurs over and over again in our

environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million
times over, without ever doing it the same way twice”

Christopher Alexander, quoted in GOF
• Name

• good name is a handle for the pattern, builds vocabulary
• Problem

• when applicable, context, criteria to be met, design goals
• Solution

• design, collaborations, responsibilities, and relationships
• Forces and Consequences

• trade-offs, problems, results from applying pattern: help in
evaluating applicability

1/16/2018 Mobile 290, Spring 2018, Java 9

Odyssey of the Mind

1/16/2018 Mobile 290, Spring 2018, Java 10

MolecularBalls
• https://en.wikipedia.org/wiki/Abstract_factory_pattern
• https://coursework.cs.duke.edu/ola/molecules

• Where do MolecularBalls come from?
• Is the source of the ballimportant?
• Should Main Program be aware of source?

• Is there more than one kind of Ball?
• Bouncing behavior?
• Color
• What's state and what's behavior?

1/16/2018 Mobile 290, Spring 2018, Java 11

Writing Programs
• Always do the hard part first. If the hard part is

impossible, why waste time on the easy part?
Once the hard part is done, you’re home free.

• Always do the easy part first. What you think at
first is the easy part often turns out to be the
hard part. Once the easy part is done, you can
concentrate all your efforts on the hard part.

• Whenever possible, re-use, share, borrow, but
do not steal code

1/16/2018 Mobile 290, Spring 2018, Java 12

Design Patterns
• MVC, aka Observer/Observable
• Separate concerns, especially important for

GUIs
• Composite
• Container is/contains Layout/View,

File/Directory
• Factory
• Separate creation from class, install new

creators

1/16/2018 Mobile 290, Spring 2018, Java 13

• Proxy/Adapter
• Stand-in with same interface, adapt interface as

needed
• Decorator
• Is-a and Has-a, e.g., Filters and java I/O

• Command
• Function/request object, undoable action

1/16/2018 Mobile 290, Spring 2018, Java 14

