Congestion and the Role
of Routers

Jeff Chase
Duke University




Overview

* Problem is "Bullies, Mobs, and Crooks" [Floyd]

+ AQM / RED / REM
- ECN

» Robust Congestion Signaling

- XCP
+ Pushback



Stoica

* Following slides are from Ion Stoica at Berkeley, with
slight mods.



Flow control: Window Size
and Throughput

»  Sliding-window based
flow control:

- Higher window >
higher throughput
» Throughput =
wnd/RTT
- Need to worry about

sequence nhumber
wrapping

- Remember: window size

control throughput

A

Segment 1
Segment >
Segment 3

‘ egment 4

Segment 5
Segment 5

istoica@cs.berkeley.edu 4




What's Really

* Knee - point after which 3|
- Throughput E,

@

- Delay -

+ Cliff - point after which
- Throughput starts to

(congestion collapse)
- Delay

* Note (in an M/M/1 queue)
- Delay = 1/(1 - utilization)

[kﬂay

Happening?

kn liff
?e Cl—inr/ loss

congestion
collapse

Load'

Load'

istoica@cs.berkeley.edu



Congestion Control vs.
Congestion Avoidance

» Congestion control goal
- Stay left of cliff
- Congestion avoidance goal

- Stay left of knee knee cliff
gl = |
L
g’ congestion
= collapse
= /

Load'

istoica@cs.berkeley.edu



Putting Everything Together:
TCP Pseudocode

Initially:
cwnd = 1; while (next < unack + win)
ssthresh = infinite; transmit next packet;

New ack received:
if (cwnd < ssthresh)
/* Slow Start*/
cwnd = cwnd + 1;

where win = min(cwnd,
flow_win);

else
/* Congestion Avoidance
*/ seq#  unack next
cwnd = cwnd + 1/cwnd; —
Timeout:
/* Multiplicative decrease */ —

ssthresh = cwnd/?2;
cwnd = 1;

istoica@cs.berkeley.edu 7



cwnd

Slow Start

The big picture

Timeout

Congestion
Avoidance

istoica@cs.berkeley.edu

Time

\ 4



Fast Retransmit and Fast
Recovery

cwnd

Congestion

Avoidance
Slow Start

Time

» Retransmit after 3 duplicated acks
- prevent expensive timeouts
* No need to slow start again

- At steady state, cwnd oscillates around the
optimal window size.

istoica@cs.berkeley.edu



TCP Reno

cwnd

Congestion

Avoidance _
Slow Start

/ ,
N

Fast recovery

* Fast retransmit: retransmit a segment after 3
DUP Acks

» Fast recovery: reduce cwnd to half instead of
To one

istoica@cs.berkeley.edu 10



Significance

- Characteristics

- Converges to efficiency, fairness
- Easily deployable
- Fully distributed

- No need to know full state of system (e.g. number
of users, bandwidth of links) (why good??

. il'ghsegry that enabled the Internet to grow beyond

- Key milestone in Internet development

- Fully distributed network architecture requires
fully distributed congestion control

- Basis for TCP

istoica@cs.berkeley.edu



TCP Problems

* When TCP congestion control was originally designed
in 1988:

- Key applications: FTP, E-mail

- Maximum link bandwidth: 10Mb/s

- Users were mostly from academic and government
organizations (i.e., well-behaved)

- Almost all links were wired (i.e., negligible error
rate)

» Thus, current problems with TCP:

- High bandwidth-delay product paths
- Selfish users
- Wireless (or any high error links) istoica@cs.berkeley.edu



Reflections on TCP

Assumes that = sources cooperate

Assumes that congestion occurs on time scales greater
than 1 RTT

* Only useful for reliable, in order delivery, non-real time
applications

Vulnerable to non-congestion related loss (e.g. wireless)
* Can be unfair to long RTT flows

istoica@cs.berkeley.edu



Router Support For
Congestion Management

Traditional Internet

- Congestion control mechanisms
at end-systems, mainly
implemented in TCP

- Routers play little role

Router mechanisms affecting
congestion management

- Scheduling

- Buffer management
Traditional routers

- FIFO

- Tail drop

istoica@cs.berkeley.edu



Drawbacks of FIFO with Tail-
drop

+ Buffer lock out by misbehaving flows

» Synchronizing effect for multiple TCP flows
» Burst or multiple consecutive packet drops
- Bad for TCP fast recovery

» Low-bandwidth, bursty flows suffer

istoica@cs.berkeley.edu



Packet Sequence Number

1400

1200

1000

800

&00

400

200

FIFO Router with Two TCP

Sessions

Time {sec)

istoica@cs.berkeley.edu

Mumber of packets

25

20

15

10

Queue Size —

Time {sec)



RED

FIFO scheduling
Buffer management:
- Probabilistically discard packets

- Probability is computed as a function of

average queue length (why average?
iscgrd Probability9 ( y 9 )

(EV

min_th max_th queue_len AVerage
Queue Length

istoica@cs.berkeley.edu



RED (cont'd)

* min_th - minimum threshold
+ max_th - maximum threshold
» avg_len - average queue length
- avg_len = (1-w)*avg_len + w*sample_len

Discard Probability

A

I
0 —— ! -

min_th max_th queue len Average
Queue Length

istoica@cs.berkeley.edu



+ If (avg_
+ If (avg_
- If (avg_

RED (cont'd)

en < min_th) - enqueue packet
en > max_th) - drop packet
en >= min_th and avg_len < max_th) >

enqueue packet with probability

Discard Probability (P)

(Y

min_th max_th queue_len  Average
Queue Length

istoica@cs.berkeley.edu



RED (cont'd)

= max_P*(avg_len - min_th)/(max_th -
min_th)

+ Improvements to spread the drops
P'=P/(1 - count*P), where
+ count - how many packets were consecutively

raer

enqueued since last drop

max_P

min_th max_th queue_len AVerage
Queue Length

istoica@cs.berkeley.edu



RED Advantages

+ Absorb burst better
» Avoids synchronization
- Signal end systems earlier

istoica@cs.berkeley.edu



Packet Sequence Number

1000

S00

800

700

600

500

400

300

200

100

RED Router with Two TCP

Sessions

25

_,-o-"'""-'l

20

15

Mumber of packets

fueue Size —
Avg. Queue Size —

Time {seg)

istoica@cs.berkeley.edu

Time {sec)



Throughput(Mbps)
O P N W M O OO N O O O

=

Problems with RED

* No protection: if a flow misbehaves it will hurt

the other flows

+ Example: 1 UDP (10 Mbps) and 31 TCP's

1

sharing a 10 Mbps link

uop] RED

\\H\\\\\\\\\\\\\\\\\\\\\

4 7 10 13 16 19 22 25 28 31

Flow Number
istoica@cs.berkeley.edu



Promoting...

* Floyd and Fall propose that routers preferentially

drop packets from unresponsive flows.



ECN

Explicit Congestion Notification

- Router sets bit for congestion

- Receiver should copy bit from packet to ack
- Sender reduces cwnd when it receives ack

- Problem: Receiver can clear ECN bit

- Or increase XCP feedback
» Solution: Multiple unmarked packet states
- Sender uses multiple unmarked packet states

- Router sets ECN mark, clearing original unmarked
state

- Receiver returns packet state in ack

istoica@cs.berkeley.edu



Receiver must
either return ECN
bit or guess nonce

More nonce bits

— less likelihood

of cheating

- 1 bitis
sufficient

® Check Sum

® Ignore Sum

-
L
‘—

Ignore Sum &

® Reset Sum e

‘-—
-
-

istoica@cs.berkeley.edu

Receiver

—'-—
-
-

Check Sum [4~ gum-_-\,ECE

-
-
-
-
-
C

4Sum=1®0=1

...................

...................

Sum=0€r>6=0



Selfish Users Summary

+ TCP allows selfish users to subvert congestion control
+ Adding a nonce solves problem efficiently
- must modify sender and receiver

* Many other protocols not designed with selfish users
in mind, allow selfish users to lower overall system
efficiency and/or fairness

- eg., BGP

istoica@cs.berkeley.edu



Slides from
srini@cs.cmu.edu



TCP Performance

» Can TCP saturate a link?
» Congestion control

- Increase uftilization until... link becomes congested
- React by decreasing window by 50%
- Window is proportional to rate * RTT

- Doesn't this mean that the network oscillates

between 50 and 100% utilization?
- Average utilization = 75%??
- No...this is *not* right!

srini@cs.cmu.edu



TCP Performance

+ If we have a large router queue - can get 100%
utilization

- But, router queues can cause large delays
* How big does the queue need to be?
- Windows vary from W > W/2
* Must make sure that link is always full
- W/2 >RTT* BW
* W=RTT* BW + Qsize
* Therefore, Qsize # RTT * BW
- Ensures 100% utilization
- Delay?
* Varies between RTT and 2 * RTT

srini@cs.cmu.edu




TCP Modeling

* Given the congestion behavior of TCP can we predict
what type of performance we should get?

* What are the important factors
- Loss rate: Affects how often window is reduced

- RTT: Affects increase rate and relates BW to
window

- RTO: Affects performance during loss recovery
- MSS: Affects increase rate

srini@cs.cmu.edu



Overall TCP Behavior

e Let’s concentrate on steady state behavior
with no timeouts and perfect loss recovery

e Packets transferred = area under curve

i

Time

Window

srini@cs.cmu.edu



Transmission Rate

What is area under curve?
- W = pkts/RTT, T=RTTs
- A = avg window * time = 3

W*T
What was bandwidth?
- BW=A/T=3W
* In packets per RTT

- Need to convert to bytes
per second

- BW=2W>*MSS/RTT

What is W?
- Depends on loss rate

srini@cs.cmu.edu



Simple TCP Model

Some additional assumptions
* Fixed RTT

* No delayed ACKs

» In steady state, TCP loses packet each time window
reaches W packets

- Window drops to W/2 packets

- Each RTT window increases by 1 packet>W/2 *
RTT before next loss

srini@cs.cmu.edu



Simple Loss Model

What was the loss rate?
- Packets per loss (3 W/RTT) * (W/2 * RTT) = 3W?/8
- 1 packet lost > loss rate = p = 8/3W?

_we | B
3p

BW=32*W*MSS/RTT

_we Bl 2
3p 3 \2p
. BW - MSS

srini@cs.cmu.edu



Fairness

+ BW proportional to 1/RTT?

* Do flows sharing a bottleneck get the same
bandwidth?

- NO!

- TCP is RTT fair

- If flows share a bottleneck and have the same
RTTs then they get same bandwidth

- Otherwise, in inverse proportion to the RTT

srini@cs.cmu.edu



TCP Friendliness

What does it mean to be TCP friendly?
- TCP is not going away
- Any new congestion control must compete with TCP
flows
- Should not clobber TCP flows and grab bulk of link

» Should also be able to hold its own, i.e. grab its fair
share, or it will never become popular

How is this quantified/shown?

- Has evolved into evaluating loss/throughput behavior
- If it shows 1/sqrt(p) behavior it is ok

- But is this really true?

srini@cs.cmu.edu



Changing Workloads

New applications are changing the way TCP is used
1980's Internet

- Telnet & FTP > long lived flows

- Well behaved end hosts

- Homogenous end host capabilities

- Simple symmeftric routing

2000's Internet

- Web & more Web - large number of short xfers
- Wild west - everyone is playing games to get bandwidth
- Cell phones and toasters on the Internet

- Policy routing

srini@cs.cmu.edu



Problems with Short
Concurrent Flows

|

.
o
f

ompete for resources
- N "slow starts” = aggressive

- No shared learning = inefficient
Entire life is in slow start

Fast retransmission is rare

Internet

==
==
——
==
==

Server
e

srini@cs.cmu.edu



TCP Fairness Issues

Multiple TCP flows sharing the same bottleneck link do not
hecessarily get the same bandwidth.

- Factors such as roundtrip time, small differences in
timeouts, and start time, ... affect how bandwidth is shared

- The bandwidth ratio typically does stabilize

Modifying the congestion control implementation changes the
aggressiveness of TCP and will change how much bandwidth a

source gets.

- Affects “fairness” relative to other flows

- Changing timeouts, dropping or adding features, ..
Users can grab more bandwidth by using parallel flows.

- Each flow gets a share of the bandwidth to the user gets
more bandwidth than users who use only a single flow

srini@cs.cmu.edu



(End of borrowed slides.)



XCP

* TCP is unfair (bandwidth proportional to 1/RTT).

* TCP is unstable (depends on # of flows and RTT).

+ TCP is inefficient (takes too long to grab the window)
+ All exacerbated by "long” and/or "fat" networks.

- Solution:

- Change all the routers.
- Generalize ECN.

- Separate efficiency (MIMD) and fairness (AIMD)
controllers.

+ Slides by Dina Katabi, SIGCOMM 2002.



ACC and Pushback: Background

Router can use inverse square-root law to identify nonresponsive
flows, or other means to identify high-bandwidth flows (bullies).

Drop preferentially at congested router.
- Floyd and Fall, Promoting...
- Mahajan and Floyd, RED-PD.
What about aggregate flows from many sources?
- Mobs: flash crowds
- Crooks or vandals/terrorists (DDOS)
"Bullies, Mobs, and Crooks" talk by Sally Floyd

- (on pushback web page)
Controlling High-Bandwidth Aggregates in the Network



ACC and Pushback: Issues

- Am I in trouble?
* Whose fault is it?

» Should I punish (throttle) them?

- If so, how much?

» Should T ask somebody else to throttle them for me?
* When should I stop?



ACC and Pushback: Trigger

+ Am I in frouble? Monitor packet drops.
* Whose fault is it?

+ Examine packets dropped by AQM/RED.

- Identify congestion signature: dest prefix.
* Fair?

* Per-flow state?



ACC and Pushback: Action

» Should I punish (throttle) the aggregate?
- Yes.

- If so, how much?

- Just enough to ensure reasonable service for
others. Nothing "Draconian”.

+ Should I ask somebody else to throttle them for me?

- If you can identify substantially contributing
upstream routers, ask them for help.

* When should I stop?
- May need feedback from upstream routers.



When and Who?

+ ACC Agent in router maintains rolling drop history.
» Drop above threshold for last K seconds?

- Identify aggregates.

- Group rates by 24-bit destination prefixes.
- Merge adjacent prefixes.

- Narrow to longest common prefix.

* Don't penalize more than some max configured
number of aggregates.

* Keep ACC rare.



How and How Much?

* Preferentially drop from aggregates to bring ambient
drop rate down to configured threshold.

-+ Don't drive aggregates below their competitors.

+ Identify uniform rate limit L sufficient to distribute
all the excess drops among the i aggregates.

- Fair distribution of pain?
- Apply leaky bucket for aggregates to rate limit L.



Pushback

+ If aggregates don't respond (drop rate is high), then
ask for help from upstream routers with pushback.

+ Identify contributing upstream routers.

- Assess their flow rates.

Distribute restriction across them in proportion to
their flow rates.

+ The restriction is a lease (requires maintenance).

Upstream routers apply restriction only to the traffic
that will traverse the congested router.



Discussion

» How does pushback reduce collateral damage?

-+ Is it enough?

» Could pushback itself be an attack vector?

- What about XCP?
- How could an attacker defeat ACC?

- Trigger time, release time
» Validation methodology: enough?

+ Will this stuff ever get deployed? If not, what good
is doing the research?



