
Congestion and the Role
of Routers

Jeff Chase
Duke University

Overview
• Problem is “Bullies, Mobs, and Crooks” [Floyd]
• AQM / RED / REM
• ECN
• Robust Congestion Signaling
• XCP
• Pushback

Stoica
• Following slides are from Ion Stoica at Berkeley, with

slight mods.

4

Flow control: Window Size
and Throughput

• Sliding-window based
flow control:
– Higher window

higher throughput
• Throughput =

wnd/RTT
– Need to worry about

sequence number
wrapping

• Remember: window size
control throughput

wnd = 3
segment 1segment 2segment 3

ACK 2

segment 4

ACK 3

segment 5segment 6

ACK 4

R
TT

 (R
ou

nd
 T

rip
 T

im
e)

istoica@cs.berkeley.edu

What’s Really Happening?
• Knee – point after which

– Throughput increases
very slow

– Delay increases fast
• Cliff – point after which

– Throughput starts to
decrease very fast to
zero (congestion collapse)

– Delay approaches infinity

• Note (in an M/M/1 queue)
– Delay = 1/(1 – utilization)

Load

Load

Th
ro

ug
hp

ut
D

el
ay

knee cliff

congestion
collapse

packet
loss

istoica@cs.berkeley.edu

Congestion Control vs.
Congestion Avoidance

• Congestion control goal
– Stay left of cliff

• Congestion avoidance goal
– Stay left of knee

Load

Th
ro

ug
hp

ut

knee cliff

congestion
collapse

istoica@cs.berkeley.edu

7

Putting Everything Together:
TCP Pseudocode

Initially:
cwnd = 1;
ssthresh = infinite;

New ack received:
if (cwnd < ssthresh)

/* Slow Start*/
cwnd = cwnd + 1;

else
/* Congestion Avoidance

*/
cwnd = cwnd + 1/cwnd;

Timeout:
/* Multiplicative decrease */
ssthresh = cwnd/2;
cwnd = 1;

while (next < unack + win)
transmit next packet;

where win = min(cwnd,
flow_win);

unack next

win

seq #

istoica@cs.berkeley.edu

8

The big picture

Time

cwnd

Timeout

Slow Start

Congestion
Avoidance

istoica@cs.berkeley.edu

9

Fast Retransmit and Fast
Recovery

• Retransmit after 3 duplicated acks
– prevent expensive timeouts

• No need to slow start again
• At steady state, cwnd oscillates around the

optimal window size.

Time

cwnd

Slow Start

Congestion
Avoidance

istoica@cs.berkeley.edu

10

TCP Reno

• Fast retransmit: retransmit a segment after 3
DUP Acks

• Fast recovery: reduce cwnd to half instead of
to one

Time

cwnd

Slow Start

Congestion
Avoidance

Timeout

Fast Retransmit

Fast recovery

istoica@cs.berkeley.edu

Significance
• Characteristics

– Converges to efficiency, fairness
– Easily deployable
– Fully distributed
– No need to know full state of system (e.g. number

of users, bandwidth of links) (why good?)
• Theory that enabled the Internet to grow beyond

1989
– Key milestone in Internet development
– Fully distributed network architecture requires

fully distributed congestion control
– Basis for TCP

istoica@cs.berkeley.edu

TCP Problems
• When TCP congestion control was originally designed

in 1988:
– Key applications: FTP, E-mail
– Maximum link bandwidth: 10Mb/s
– Users were mostly from academic and government

organizations (i.e., well-behaved)
– Almost all links were wired (i.e., negligible error

rate)
• Thus, current problems with TCP:

– High bandwidth-delay product paths
– Selfish users
– Wireless (or any high error links) istoica@cs.berkeley.edu

Reflections on TCP
• Assumes that all sources cooperate
• Assumes that congestion occurs on time scales greater

than 1 RTT
• Only useful for reliable, in order delivery, non-real time

applications
• Vulnerable to non-congestion related loss (e.g. wireless)
• Can be unfair to long RTT flows

istoica@cs.berkeley.edu

Router Support For
Congestion Management

• Traditional Internet
– Congestion control mechanisms

at end-systems, mainly
implemented in TCP

– Routers play little role
• Router mechanisms affecting

congestion management
– Scheduling
– Buffer management

• Traditional routers
– FIFO
– Tail drop

istoica@cs.berkeley.edu

Drawbacks of FIFO with Tail-
drop

• Buffer lock out by misbehaving flows
• Synchronizing effect for multiple TCP flows
• Burst or multiple consecutive packet drops

– Bad for TCP fast recovery
• Low-bandwidth, bursty flows suffer

istoica@cs.berkeley.edu

FIFO Router with Two TCP
Sessions

istoica@cs.berkeley.edu

RED
• FIFO scheduling
• Buffer management:

– Probabilistically discard packets
– Probability is computed as a function of

average queue length (why average?)
Discard Probability

Average
Queue Length

0

1

min_th max_th queue_len

istoica@cs.berkeley.edu

RED (cont’d)
• min_th – minimum threshold
• max_th – maximum threshold
• avg_len – average queue length

– avg_len = (1-w)*avg_len + w*sample_len
Discard Probability

Average
Queue Length

0

1

min_th max_th queue_len

istoica@cs.berkeley.edu

RED (cont’d)
• If (avg_len < min_th) enqueue packet
• If (avg_len > max_th) drop packet
• If (avg_len >= min_th and avg_len < max_th)

enqueue packet with probability P

Discard Probability (P)

Average
Queue Length

0

1

min_th max_th queue_len

istoica@cs.berkeley.edu

RED (cont’d)
• P = max_P*(avg_len – min_th)/(max_th –

min_th)
• Improvements to spread the drops

P’ = P/(1 – count*P), where
• count – how many packets were consecutively

enqueued since last drop
Discard Probability

Average
Queue Length

0

1

min_th max_th queue_len
avg_len

P

max_P

istoica@cs.berkeley.edu

RED Advantages
• Absorb burst better
• Avoids synchronization
• Signal end systems earlier

istoica@cs.berkeley.edu

RED Router with Two TCP
Sessions

istoica@cs.berkeley.edu

Problems with RED
• No protection: if a flow misbehaves it will hurt

the other flows
• Example: 1 UDP (10 Mbps) and 31 TCP’s

sharing a 10 Mbps link

RED

0
1
2
3
4
5
6
7
8
9

10

1 4 7 10 13 16 19 22 25 28 31
Flow Number

Th
ro

ug
hp

ut
(M

bp
s) UDP

istoica@cs.berkeley.edu

Promoting…
• Floyd and Fall propose that routers preferentially

drop packets from unresponsive flows.

ECN
• Explicit Congestion Notification

– Router sets bit for congestion
– Receiver should copy bit from packet to ack
– Sender reduces cwnd when it receives ack

• Problem: Receiver can clear ECN bit
– Or increase XCP feedback

• Solution: Multiple unmarked packet states
– Sender uses multiple unmarked packet states
– Router sets ECN mark, clearing original unmarked

state
– Receiver returns packet state in ack

istoica@cs.berkeley.edu

ECN
• Receiver must

either return ECN
bit or guess nonce

• More nonce bits
→ less likelihood
of cheating
– 1 bit is

sufficient

istoica@cs.berkeley.edu

Selfish Users Summary
• TCP allows selfish users to subvert congestion control
• Adding a nonce solves problem efficiently

– must modify sender and receiver
• Many other protocols not designed with selfish users

in mind, allow selfish users to lower overall system
efficiency and/or fairness
– e.g., BGP

istoica@cs.berkeley.edu

Slides from
srini@cs.cmu.edu

TCP Performance
• Can TCP saturate a link?
• Congestion control

– Increase utilization until… link becomes congested
– React by decreasing window by 50%
– Window is proportional to rate * RTT

• Doesn’t this mean that the network oscillates
between 50 and 100% utilization?
– Average utilization = 75%??
– No…this is *not* right!

srini@cs.cmu.edu

TCP Performance
• If we have a large router queue can get 100%

utilization
– But, router queues can cause large delays

• How big does the queue need to be?
– Windows vary from W W/2

• Must make sure that link is always full
• W/2 > RTT * BW
• W = RTT * BW + Qsize
• Therefore, Qsize ≈ RTT * BW

– Ensures 100% utilization
– Delay?

• Varies between RTT and 2 * RTT
srini@cs.cmu.edu

TCP Modeling
• Given the congestion behavior of TCP can we predict

what type of performance we should get?
• What are the important factors

– Loss rate: Affects how often window is reduced
– RTT: Affects increase rate and relates BW to

window
– RTO: Affects performance during loss recovery
– MSS: Affects increase rate

srini@cs.cmu.edu

Overall TCP Behavior

Time

Window

• Let’s concentrate on steady state behavior
with no timeouts and perfect loss recovery

• Packets transferred = area under curve

srini@cs.cmu.edu

Transmission Rate
• What is area under curve?

– W = pkts/RTT, T = RTTs
– A = avg window * time = ¾

W * T
• What was bandwidth?

– BW = A / T = ¾ W
• In packets per RTT

– Need to convert to bytes
per second

– BW = ¾ W * MSS / RTT

• What is W?
– Depends on loss rate

Time

W

W/2

srini@cs.cmu.edu

Simple TCP Model
Some additional assumptions
• Fixed RTT
• No delayed ACKs
• In steady state, TCP loses packet each time window

reaches W packets
– Window drops to W/2 packets
– Each RTT window increases by 1 packet W/2 *

RTT before next loss

srini@cs.cmu.edu

Simple Loss Model
• What was the loss rate?

– Packets per loss (¾ W/RTT) * (W/2 * RTT) = 3W2/8
– 1 packet lost loss rate = p = 8/3W2

–

• BW = ¾ * W * MSS / RTT

–

–
3

2 pRTT

MSSBW
×

=

p
W

3
8

=

pp
W

2
3

3
4

3
8

×==

srini@cs.cmu.edu

Fairness
• BW proportional to 1/RTT?
• Do flows sharing a bottleneck get the same

bandwidth?
– NO!

• TCP is RTT fair
– If flows share a bottleneck and have the same

RTTs then they get same bandwidth
– Otherwise, in inverse proportion to the RTT

srini@cs.cmu.edu

TCP Friendliness
• What does it mean to be TCP friendly?

– TCP is not going away
– Any new congestion control must compete with TCP

flows
• Should not clobber TCP flows and grab bulk of link
• Should also be able to hold its own, i.e. grab its fair

share, or it will never become popular
• How is this quantified/shown?

– Has evolved into evaluating loss/throughput behavior
– If it shows 1/sqrt(p) behavior it is ok
– But is this really true?

srini@cs.cmu.edu

Changing Workloads
• New applications are changing the way TCP is used
• 1980’s Internet

– Telnet & FTP long lived flows
– Well behaved end hosts
– Homogenous end host capabilities
– Simple symmetric routing

• 2000’s Internet
– Web & more Web large number of short xfers
– Wild west – everyone is playing games to get bandwidth
– Cell phones and toasters on the Internet
– Policy routing

srini@cs.cmu.edu

Problems with Short
Concurrent Flows

• Compete for resources
– N “slow starts” = aggressive
– No shared learning = inefficient

• Entire life is in slow start
• Fast retransmission is rare

f(n)f(n)

f2f2

f1f1

Server
Client

Internet

srini@cs.cmu.edu

TCP Fairness Issues
• Multiple TCP flows sharing the same bottleneck link do not

necessarily get the same bandwidth.
– Factors such as roundtrip time, small differences in

timeouts, and start time, … affect how bandwidth is shared
– The bandwidth ratio typically does stabilize

• Modifying the congestion control implementation changes the
aggressiveness of TCP and will change how much bandwidth a
source gets.
– Affects “fairness” relative to other flows
– Changing timeouts, dropping or adding features, ..

• Users can grab more bandwidth by using parallel flows.
– Each flow gets a share of the bandwidth to the user gets

more bandwidth than users who use only a single flow

srini@cs.cmu.edu

(End of borrowed slides.)

XCP
• TCP is unfair (bandwidth proportional to 1/RTT).
• TCP is unstable (depends on # of flows and RTT).
• TCP is inefficient (takes too long to grab the window)
• All exacerbated by “long” and/or “fat” networks.
• Solution:

– Change all the routers.
– Generalize ECN.
– Separate efficiency (MIMD) and fairness (AIMD)

controllers.
• Slides by Dina Katabi, SIGCOMM 2002.

ACC and Pushback: Background
• Router can use inverse square-root law to identify nonresponsive

flows, or other means to identify high-bandwidth flows (bullies).
• Drop preferentially at congested router.

– Floyd and Fall, Promoting…
– Mahajan and Floyd, RED-PD.

• What about aggregate flows from many sources?
– Mobs: flash crowds
– Crooks or vandals/terrorists (DDOS)

• “Bullies, Mobs, and Crooks” talk by Sally Floyd
– (on pushback web page)

• Controlling High-Bandwidth Aggregates in the Network

ACC and Pushback: Issues
• Am I in trouble?
• Whose fault is it?
• Should I punish (throttle) them?
• If so, how much?
• Should I ask somebody else to throttle them for me?
• When should I stop?

ACC and Pushback: Trigger
• Am I in trouble? Monitor packet drops.
• Whose fault is it?

• Examine packets dropped by AQM/RED.
• Identify congestion signature: dest prefix.
• Fair?
• Per-flow state?

ACC and Pushback: Action
• Should I punish (throttle) the aggregate?

– Yes.
• If so, how much?

– Just enough to ensure reasonable service for
others. Nothing “Draconian”.

• Should I ask somebody else to throttle them for me?
– If you can identify substantially contributing

upstream routers, ask them for help.
• When should I stop?

– May need feedback from upstream routers.

When and Who?
• ACC Agent in router maintains rolling drop history.
• Drop above threshold for last K seconds?
• Identify aggregates.

– Group rates by 24-bit destination prefixes.
– Merge adjacent prefixes.
– Narrow to longest common prefix.

• Don’t penalize more than some max configured
number of aggregates.

• Keep ACC rare.

How and How Much?
• Preferentially drop from aggregates to bring ambient

drop rate down to configured threshold.
• Don’t drive aggregates below their competitors.
• Identify uniform rate limit L sufficient to distribute

all the excess drops among the i aggregates.
– Fair distribution of pain?

• Apply leaky bucket for aggregates to rate limit L.

Pushback
• If aggregates don’t respond (drop rate is high), then

ask for help from upstream routers with pushback.
• Identify contributing upstream routers.
• Assess their flow rates.
• Distribute restriction across them in proportion to

their flow rates.
• The restriction is a lease (requires maintenance).
• Upstream routers apply restriction only to the traffic

that will traverse the congested router.

Discussion
• How does pushback reduce collateral damage?
• Is it enough?
• Could pushback itself be an attack vector?
• What about XCP?
• How could an attacker defeat ACC?
• Trigger time, release time
• Validation methodology: enough?
• Will this stuff ever get deployed? If not, what good

is doing the research?

