
Efficient Fair Queuing using Deficit Round Robin

M. Shreedhar George Varghese

Microsoft Corporation* Washington University in St. Louis.

Abstract

Fair queuing is a technique that allows each flow passing

through a network device to have a fair share of network

resources. Previous schemes for fair queuing that achieved

nearly perfect fairness were expensive to implement: specifi-

cally, the work required to process a packet in these schemes

was O(log(n)), where n is the number of active flows. This

is expensive at high speeds. On the other hand, cheaper

approximations of fair queuing that have been reported in
the literature exhibit unfair behavior. In this paper, we

describe a new approximation of fair queuing, that we call

Deficit Round Robin. Our scheme achieves nearly perfect

fairness in terms of throughput, requires only O(1) work

to process a packet, and is simple enough to implement in

hardware. Deficit Round Robin is also applicable to other

scheduling problems where servicing cannot be broken up

into smaller units, and to distributed queues.

1 Introduction

When there is contention for resources, it is important for

resources to be allocated or scheduled fairly. We need fire-

walk bet ween cent ending users, so that the “fair” allocation

is followed strictly. For example, in an operating system,

CPU scheduling of user processes controls the use of CPU re-

sources by processes, and insulates well-behaved users from

ill-behaved users. Unfortunately, in most computer net-

works there are no such firewalls; most networks are sus-

ceptible to badly-behaving sources. A rogue source that

sends at an uncontrolled rate can seize a large fraction of the

buffers at an intermediate router; this can result in dropped

packets for other sources sending at more moderate rates!

A solution to this problem is needed to isolate the effects of

bad behavior to users that are behaving badly.

An isolation mechanism called Fair Queuing [DKS89]

has been proposed, and has been proved [GM90] to have

nearly perfect isolation and fairness. Unfortunately, Fair

Queuing (FQ) appears to be expensive to implement. Specif-

ically, FQ requires O(log(n)) work per packet to implement

fair queuing, where n is the number of packet streams that

are concurrently active at the gateway or router. With

a large number of active packet streams, FQ is hard to

implement 1 at high speeds. Some attempts have been made

to improve the efficiency of FQ; however such attempts ei-

ther do not avoid the O(iog(n)) bottleneck or are unfair.

In this paper we shall define an isolation mechanisin

that achieves nearly perfect fairness (in terms of through-

put), and which takes 0(1) processing work per packet. Our

scheme is simple (and therefore inexpensive) to implement

at high speeds at a router or gateway. Further we provide

analytical results that do not depend on assumptions about

traffic distributions; we do so by providing worst-case re-

sults across sequences of inputs. Such a rnortized [CLR90]

and competitive [ST85] analyses have been a major intluence

in the analysis of sequential algorithms because they finesse

the need to make assumptions about probability distribu-

tions of inputs.

Work done while at Washington University

Permission to make digital/hard copies of all or part of this material with-
out fee is granted provided that the copies are not made or distributed
for profit or commercial advantage, the ACM copyrighffserver
notice. the title of the ~ublication and its date armear. and notice is aiven

Flows: Our intent is to provide firewalls between differ-

ent packet streams. We formalize the intuitive notion of

a packetstream using the more precise notion of a flow

[Zha91]. A flow haa two properties:

that copyright is by permission of the Association for ‘Computing Ma;hinery,
Inc. (ACM), To copy otherwise: to repubhsh, to post on servers or to
redistribute to lists, requires prior speclflc permission and/or a fee. ● A flow is a stream of packets which traverse the same

SIGCOMM ’95 Cambridge, MA USA
route from the source to the destination and that re-

0 1995 ACM 0-89791 -711-1 /95/0008 $3.50 1alternately, while hardware architectures could be devised to

implement FQ, this will probably drive up the cost of the router.

231

quire the same grade of service at each router or gate-

way in the path.

● In addition, every packet can be uniquely assigned to

a flow using prespecified fields in the packet header.

The notion of a flow is quite general and applies to data-

gram networks (e.g., 1P, OS 1) and Virtual Circuit networks

like X.25 and ATM. For example, a flow could be identi-

fied by a Virtual Circuit Identifier (VCI) in a virtual circuit

network like X.25 or ATM. On the other hand, in a data-

gram network, a flow could be identified by packets with the

same source–destinat ion addresses. 2 W bile the source and

destination addresses are used for routing, we could discrim-

inate flows at a finer granularity by also using port numbers

(which identify the transport layer session) to determine the

flow of a packet. For example, this level of discrimination

allows a file transfer connection between source A and des-

tination B to receive a larger share of the bandwidth than

a virtual terminal connection between A and B.

As in all FQ variants, our solution can be used to pro-

vide fair service to the various flows that thread a router,

regardless of the way a flow is defined.

Organization: The rest of the paper is organized as fol-

lows. In the next section, we review the relevant previous

work. A new technique for avoiding the unfairness of round-

robin scheduling called dejicd rourzd-robzn is described in

Section 3. Round-robin scheduling [Nag87] can be unfair if

different flows use different packet sizes; our scheme avoids

this problem by keeping state, per flow, that measures the

“deficit” or past unfairness. We analyze the behavior of

our scheme using both analysis and simulation in Sections

4-6. Basic deficit round-robin provides throughput in terms

of fairness but provides no latency bounds. In Section 7,

we describe how to augment our scheme to provide latency

bounds.

2 Previous Work

rogue flow can keep increasing its share of the bandwidth

and cause other (well–behaved) flows to reduce their share.

With FCFS queuing, if a rogue connection sends packets

at a high rate, it can capture an arbitrary fraction of the

outgoing bandwidth. This is what we want to prevent by

building firewalls between fIows.

Typically routers try to enforce some amount of fair-

ness by giving fair access to traffic coming on different in-

put links. However, this crude form of resource allocation

can produce exponentially bad fairness properties as shown

below.

In Figure 1 for example, assume that all four flows F1

- F4 wish to flow through link L to the right of node D,

and that all flows always have data to send. If node D

does not discriminates flows, node D can only provide fair

treatment by alternately serving traffic arriving on its input

links. Thus flow F4 gets half the bandwidth of link L and

all other flows combined get the remaining half. A similar

analysis at C shows that F3 gets half the bandwidth on

the link from C to D. Thus without discriminating flows,

F4 gets 1/2 the bandwidth of link L, F3 gets 1/4 of the

bandwidth, F2 gets 1/8 of the bandwidth, and F1 gets 1/8

of the bandwidth. In other words, the portion .allocat ed to

a flow can drop exponentially with the number of hops that

the flow must traverse. This is sometimes called the parking

lot problem because of its similarity to a crowded parking

lot with one exit.

Figure 1: The parking lot problem

Nagle’s solution: In Figure 1, the problem arose be-

cause the router allocated bandwidth based on input links.

Thus at router D, F4 is offered the same bandwidth as flows

Fl, F2 and F3 combined. It is unfair to allocate bandwidth

Existing Routers: Most routers use first-come-first-serve
based on topology. A better idea is to dktinguish flows at

(FCFS\ service on outrmt links. In FCFS, the order of
a router and treat them separately.

, .
arrival completely determines the allocation of packets to

output builers. The presumption is that congestion con-

trol is implemented by the source. In feedback schemes

for congestion control, connections are supposed to reduce

their sending rate when they sense congestion. However, a

2Note that a flow might not always traverse the same path in

datagram networks, since the routing tables can change during

the lifetime of a connection. Since the probability of such an event

is low we shall assume that it traverses the same path during a

session.

Nagle [Nag87] proposed an approximate solution to thk

problem for datagram networks by having routers discrimi-

nate flows, and then providing round-robin service to flows

for every output link. Nagle proposed identifying flows us-

ing source-destination addresses, and using separate output

queues for each flow; the queues are serviced in round-robin

fashion. This prevents a source from arbitrarily increasing

its share of the bandwidth. When a source sends packets

too quickly, it merely increases the length of its own queue.

An ill-behaved source’s packets will get dropped repeatedly.

232

Despite its merits, there is a flaw in this scheme. It

ignores packet lengths. The hope is that the average packet

size over the duration of a flow is the same for all flows;

in this case each flow gets an equal share of the output

link bandwidth. However, in the worst case, a flow can get

@ times the bandwidth of another flow, where Max is

the maximum packet size and Min is the minimum packet

size.

Fair Queuing: Demers, Keshav and Shenker devised an

ideal algorithm called bit–by–bit round robin – (BR) which

solves the flaw in Nagle’s solution. In the BR scheme, each

flow sends one bit at a time in round robin fashion. Since it

is impossible to implement such a system, they suggest ap-

proximately simulating BR. To so, they calculate the time

when a packet would have left the router using the BR algo-

rithm. The packet is then inserted into a queue of packets

sorted on departure times. Unfortunately, it is expensive to

insert into a sorted queue. The best known algorithms for

inserting into a sorted queue require 0(iog(n)) time, where

n is the number of flows. While the BR guarantees fair-

ness [GM90], the packet processing cost makes it hard to

implement cheaply at high speeds.

A naive FQ server would require O(log(m)), where m

is the number of packets in the router. However Keshav

[Kes91] shows that only one entry per flow need be inserted

into a sorted queue. This still results in O(log(t~)) overhead.

Keshav’s other implementation ideas [Kes91] take at least

O(log(n)) time in the worst case.

Stochastic Fair Queuing (SFQ): SFQ was proposed

by McKenney [McK91] to address the inefficiencies of Na-

gle’s algorithm. McKenney uses hashing to map packets

to corresponding queues. Normally, one would use hashing

with chaining to map the flow ID in a packet to the corre-

sponding queue. One would also require one queue for every

possible flow through the router. McKenney, however, sug-

gests that the number of queues be considerably less than

the number of possible flows. All flows that happen to hash

into the same bucket are treated equivalently. This simpli-

fies the hash computation (hash computation is now guar-

anteed to take O(1) time), and allows the use of a smaller

number of queues. The disadvantage is that flows that col-

lide with other flows will be treated unfairly. The fairness

guarantees are probabilistic; hence the name .stoch as tic fair

queuing. However, if the size of the hash index is suffi-

ciently larger than the number of active flows through the

router, the probability of unfairness will be small. Notice

that the number of queues need only be a small multiple

of the number of actwe flows (as opposed to the number of

possible flows, as required by Nagle’s scheme).

Queues are serviced in round robin fashion, without con-

sidering packet lengths. When there are no free buffers to

store a packet, the packet at the end of the longest queue is

dropped. McKenney shows how to implement this buffer

stealing scheme in 0(1) time using bucket sorting tech-

niques. Notice that buffer stealing allows bet t er buffer uti-

lization as buffers are essentially shared by all flows. The

major contributions of McKenney ’s scheme are the buffer

stealing algorithm, and the idea of using hashing and ignor-

ing collisions. However, his scheme does nothing about the

inherent unfairness of Nagle’s round-robin scheme.

Other Relevant Work: Golestani introduced [G0194]

a fair queuing scheme, called self-clocked fair queuing. This

scheme uses a virtual time function which makes compu-

tation of the departure times simpler than in ordinary Fair

Queuing. However, his approach retains the O(log(n)) sort-

ing bottleneck.

Van Jacobson and Sally Floyd have proposed a resource

allocation scheme called Class-based queuing that has been

implemented. In the context of that scheme, and indepen-

dent of our work, Sally Floyd has proposed a queuing algo-

rithm [Flo93a, Flo93b] that is similar to our Deficit Round

Robin scheme described below. Her work does not have

our theorems about throughput properties of various flows;

however, it does have interesting results on delay bounds

and also considers the more general case of multiple pri-

ority classes. A recent paper [SA94] has (independently)

proposed a similar idea to our scheme: in the context of a

specific LAN protocol (DQDB) they propose keeping track

of remainders across rounds. Their algorithm is, however,

mixed in with a number of other features needed for DQDB.

We believe that we have cleanly abstracted the problem;

thus our results are simpler and applicable to a variety of

contexts.

A paper by Parekh and Gallagher [PG93] showed that

fair queuing could be used together with a leaky bucket ad-

mission policy to provide delay guarantees. This showed

that FQ provides more than isolation; it also provides end–

to–end latency bounds. While it increased the attractive-

ness of FQ, it provided no solution for the high overhead of

FQ.

3 Deficit Round Robin

Ordinary round-robin servicing of queues can be done in

constant time. The major problem, however, is the unfair-

ness caused by possibly different packet sizes used by dif-

ferent flows. We now show how this flaw can be removed,

while still requiring only constant time. Since our scheme is

233

a simple modification of round-robin servicing, we call our time complexities tn enqueuing or dequeuing a packet from

scheme deficzt round- robzn. the router.

We use stochastic fair queuing to assign flows to queues.

To service the queues, we use round-robin servicing with a

quantum of service assigned to each queue; the only dif-

ference from traditional round-robin is that if a queue was

not able to send a packet zn the prevzous round because zts

packet size was too large, the remainder from the previous

quantum M added to the quantum for the next round. Thus

deficits are kept track off, queues that were shortchanged in

a round are compensated in the next round.

In the next few sections, we will describe and precisely

prove the properties of deficit round-robin schemes. We

start by defining the figures of merit used to evaluate differ-

ent schemes. In defining the figures of merit we make two

assumptions:

For example, if a fair queuing algorithm takes O(log(n))

time to enqueue a packet and O(1) time to dequeue a packet,

we say that the Work of the algorithm is O(log(n)). To

define the throughput fairness measure, we assume a heavy

traffic model. Thus all n flows have a continuous stream of

arbitrary sized packets arriving to the router, and all these

flows wish to leave the router on the same outgoing link. In

other words, there is always a backlog for each flow, and the

backlog consists of arbitrary sized packets.

Assume that we start sending packets on the outgoing

link at time O. Let sent,,, be the total number of bytes sent

by flow i by time t;let sent, be the total number of bytes

sent by all n flows by time t. Intuitively, we will define

a fairness quotient for flow i that is the worst-case ratio

(across all possible input packet size distributions) of the
● We use McKenney ’s idea of stochastic queuing to

bound the number of queues required. Thus when
bytes sent by flow i to the bytes sent by all flows. This

merely expresses the worst-case “share” obtained by flow
combining deficit round-robin wit h hashing, there are

two orthogonal issues which affect performance. To
i. While we can define such a quotient after any amount

of time t,it is more natural to take the limit as t tends to
clearly separate these issues, we will assume during

infinity.
the analysis of deficit round-robin that flows are mapped

uniquely into different queues. We incorporate the ef-

fect of hashing later. Definition 3.2 FQ, = iWax(limt_+~ =), where the max-

2zmum is taken across all possible input pac et stze dtstrtbu-
. In calculating throughput, we assume that each flow

tions for all flows.
is always backlogged — i.e., always has a packet to

send. We return to the issue of fairness for non-

backlogged flows in Section 6.
Next, we assume there is some quantity ~,, settable by

a manager, which expresses the ideal share to be obtained

by flow z. Thus the “ideal” fairness quotient for flow t is

Figures of Merit: Currently, there is no uniform figure ,~.. In the simplest case, all the ~, are equal and the

of merit defined for Fair Queuing algorithms, We define two
LJ=l ‘J

ideal fairness quotient is 1/n. Finally, we measure how far
measures: Fairness Index (that measures the fairness of the

a fair queuing implementation departs from the ideal by
queuing discipline) and Work Quotient (that measures the

time complexity of the queuing algorithm). Similar fairness
measuring the ratio of actual fairness quotient achieved to

the ideal fairness quotient. We call this the fairness index.
measures have been defined before, but no definition of work

has been proposed. It is important to have measures that

are not specific to deficit round robin, so that they can be

applied to other forms of fair queuing.

To define the work measure, we assume the following

model of a router We assume that packets sent by flows

arrive to an Enqueue Process that queues a packet to an

output link for a router. We assume there is a Dequeue

Process at each output link (although the figure shows a

single Dequeue Process) that is active whenever there are

packets queued for the output link; whenever a packet is

transmitted, this process picks the next packet (if any) and

begins to transmit it. Thus the work to process a packet

involves two parts: enqueuing and dequeuing.

Definition 3.1 Work is defined as the maxtmum of the

Definition 3.3 The fairness index for a flow i in a fatr

queuing impiementatton is:

FQt-X;=, ~,
Fairness IndeG =

j, ‘

Algorithm: We propose an algorithm called Deficit Round

Rob! n (Figure 2, Figure 3) for servicing queues in a router

(or a gateway). We will assume that the quantities f,, that

indicate the share given to flow i, 3 are specified by a quan-

tity called Quantum, for each flow (for reasons that will be

apparent below). Also, since the algorithm works in rounds,

we measure time in terms of rounds.

3more precisely, this is the share given to queue i and to all

flows that hash into this queue. However, we will ignore this

distinction until we incorporate the effects of hashing.

234

,——

, -Jb.
Round Robin

Packet Queues

———

#l (20 750 200

De flclt
Counter

[500–

1

L... —..

~~

r--p

!.

[.,

L_J

I -/

QuantumS.ze
~——

500
,—— -

Figure 2: Deficit Round Robin: At the start, all the

Deficit Counter variables are initialized to zero. The round robin

pointer points to the top of the actwe list. When the first queue is

serviced the Quantum value of 500 is added to the Deficzt Counter

value. The remainder after servicing the queue is left in the

DeficitCounter variable,

Packets coming in on different flows are stored in dif-

ferent queues. Let the number of bytes sent out for queue

i in round k be bytes, ,k. Each queue i is allowed to send

out packets in the first round subject to the restriction that

bytesi,l < Quantum,. If there are no more packets in queue

i after the queue has been serviced, a state variable called

DeficitCounter, is reset to 0. Otherwise, the remaining

amount (Quantum, — E@es,,k) is stored in the state vari-

able Deficit (7OU nt er,. In subsequent rounds, the amount of

bandwidth usable by this flow is the sum of Deficit Counter,

of the previous round added to Quantum,. Pseudocode for

this algorithm is shown in Figure 4.

To avoid examining empty queues, we keep an auxil-

iary list ActiveList which is a list of indices of queues that

contain at least one packet. Whenever a packet arrives to a

previously empty queue i, i is added to the end of ActzveLwt.

Whenever index i is at the head of ActiveList, the algorithm

services up to Quantum, + DeficitCounter, worth of bytes

from queue i; if at the end of this service opportunity, queue

i still has packets to send, the index i is moved to the end

of ActiveLis& otherwise, DeficitCounter, is set to zero and

index i is removed from ActiveList.

In the simplest case Quantum, = Quantumj for all flows

i, j. Exactly as in weighted fair queuing, however, each

flow i can ask for a larger relative bandwidth allocation

and the system manager can convert it into an equivalent

value of Quantum,. Clearly if Quantum, = 2 Quantumj, the

manager intends that flow i get twice the bandwidth of flow

j when both i and j are active.

+

Round Robin
Pointer

Packet Queues
Deficit
counter

Quantum Size

500

Figure 3: Deficit Round Robin (2): After sending out a packet of

size 200, the queue had 300 bytes of its quantum left. It could not

use it the current round, since the next packet in the queue is 750

bytes Therefore, the amount 300 will carry over to the next round

when it can send packets of size totaling 300 (deficit from previous

round) + 500 (quantum).

4 Analytical Results

We begin with a lemma that is true for all executions of

the DRR algorithm (not just for the heavy traffic scenario

which is used to evaluate fairness):

Lemma 4.1 For all i and at the end of a round in every

execution of the DRR algorithm: O < Dejicit Counter, <

Max.

Proof: Initially, DejicitCounteri = O =+ DeficitCounterV <

Quantum,. Notice that the Deficit Counter, variable only

changes value when queue i is serviced. During a round,

when the servicing of queue i completes there are two pos-

sibllit ies:

e If a packet is left in the queue for flow i, then it must

be of size strictly greater than Deficit Counter,. Also,

by definition, the size of any packet is no more than

Maq thus DeficitCounter, is strictly less than Max.

Also, the code guarantees that Dej7citCotsnter$ >0.

e If no packets are left in the queue, the algorithm resets

Def7cutCounter, to zero.

❑

Next we consider the case where only flow i always has a

backlog (i.e., the other flows may or may not be backlogged

or even active), and show that the difference between the

ideal and actual allocation to flow i is always bounded by

the size of a maximum-size packet. While this result will

235

Consider any output link for a given router.

Queue, is the ith queue, which stores packets

with flow id t. Queues are numbered O to (n – 1),

n is the maximum number of output link queues.

Engueueo, Dequeueo are standard Queue operators.

We use a list of active flows, ActtveLzst, with

standard operations like InsertActiueL~st, which adds

a flow index to the end of the active list.

Free Bu~~er() frees a buffer from the flow with the

longest queue using using McKenney’s buffer stealing.

Quantum, is the quantum allocated to Queue,.

DeficitCounter, contains the bytes that Queue, did not

use in the previous round.

Initialization:

for(i=O; t<rz; z=t+l)

DejicitCounter, = O;

Enqueuing module: on arrival of packet p

z = ExtractFlow(p)

if (EzistsInActtveLtst(z) == FALSE) then

InsertActzveLzst(i); (*add i to active list*)

DeficitCounter% = O;

if no free buffers left then

FreeBuffero; (* using buffer stealing *)

Engueue(i, p); (* enqueue packet p to queue i*)

Dequeuing module:

While(TRUE) do

If ActiveLzst is not empty then

Remove head of Act~veLzst, say flow z

DejicitCounter, = Quantumt + DejicttCounter,;

while((DejicitCounter, > O) and

(Queue, not empty)) do

PacketSize = Size(Head(Queue,));

if(PacketSize < DeficztCounter,) then

Send(Dequeue(Queue,));

DeficitCounter, = DejicitCounter,

–PacketSizq

Else break; (’skip while 100P *)

if (Ernptg(Queue,)) then

DejicitCounter$ = O;

Else InsertActiveLzst(,);

Figure 4: Code for Deficit Round Robin

imply that the fairness index of a flow is 1, it has even

stronger implications. This is because it implies that even

during arbitrarily short intervals, the discrepancy between

what a flow gets and what it should get is bounded by Max.

The router services the queues in a round robin manner

according to the DRR algorithm defined earlier. A round

is one round-robin iteration over the n queues. We assume

that rounds are numbered starting from 1, and the start of

Round 1 can be considered the end of a hypothetical Round

o.

Definition 4.1 A flow is backlogged zn an execution if

the queue for flow z is never empty at any point durvng the

execution.

Theorem 4.2 Consider any execution oj the DRR scheme

m which flow i w backlogged. After any 1{ rounds the dif-

ference between K Quantum, [a. e.l the bytes that flow i

should have sent) and the bytes thatjlow t actually sends M

bounded by Max.

Proof: We start with some definitions. Let DeficitCounter%,k

be the value of DejicitCounter$ for flow i at the end of round

k. Let bytes,,k be the bytes sent by flow t in round k. Let

sent,,~ be the bytes sent by flow i in rounds 1 through k.

Clearly, sent,),< = ~~=1 bytes,,k.

Initially, we have: for all a, DejicitCounter,,O = bytes,,. =

O. The main observation (which follows immediately from

the protocol) is: bytes,,k + DejicitCounter,,k = Quantum, +

DejicitCounter,, k_l. We use the assumption that flow i al-

ways has a backlog in the above equation. Thus in round k,

the total allocation to flow z is Quantum, +DejicitCounter,, ~_l.

Thus if flow i sends bytes, ,k, then the remainder will be

stored in Dejictt Counter,,~, because queue i never empties

during the execution. Thk equation reduces to:

bytesfi,h = Quantum, +DeJicitCounter,, h_l –DeficitCounter,,~.

Summing the last equation over A- rounds of servic-

ing of flow t we get a telescoping series. Since sent,~(=

~~=1 lwtes,,~ and DeficitCounter,,O = O, we get:

sent,,l< = 1$’. Quantum, – DeficitCounter,, h-.

The ideal bytes allocated to a flow i after A“ rounds

is K Quantum,. Subtracting, it is easy to see that the

difference is s Max (using Lemma 4.1). ❑

The following corollary shows that two backlogged flows

that have the same quantum receive almost the same ser-

vice. In Section 6 we show that a similar result holds even if

the flows are not initialized in the same way, and if the two

flows are compared in the middle of a round. The corollary

follows directly from Theorem 4.2.

236

Corollary 4.3 The maximum difference in the total bytes

sent by any two backlogged flows (that have the same quan-

tum size) after any number of rounds is less than Max.

Finally, we consider the heavy traffic scenario in which

there are n continuously active incoming flows. Recall that

we assume that there are packets available to be sent out

from all flow queues at all times. The packets are of arbi-

trary sizes in the range between Mm and Max. Using this

scenario, we show that the fairness index of all flows is 1.

Theorem 4.4 For any flow t, FatrnessIndexi = 1.

Proof: We know from Theorem 4.2 that the maximum

difference between a flow’s ideal and actual allocations is

Max. Thus for any flow i and any round 1{:

~tr . Quantum, – Max< .$en&,l{ ~ A- Quantum,

Summing over all n flows we get:

~{ ~~=1 Quantum, – n. kfax < SentI< < ~< ~~=1 Quantum,.

Thus:

K Quan.tum, -Max ~ sent, ~. K Quantum

~~~=, Quantum, – sentK < 1~~~=1 Quantumc–n Max

Now in the limit as time t tends to infinity, so does the

number of rounds A-. If we take the limit of the previous

equation as 1{ goes to infinity we get (see definition of FQ

given in Definition 3.2):

Quantum, Quantum,

~~=, Quantumt s ‘Q’ s ~~=1 Quantum,’ ‘hich ‘mplies

that:

FQ, =
Quantum

~~=, Quant~m,

Finally, since ~, = Quantum, (recall that in DRR the

share allocated to each flow is expressed using the quantum

allocated to each flow), we get:

FQ, z“., ?, = ~
FairnessIndeG = ~,’- . ❑

Having dealt with the fairness properties of DRR, we

analyze the worst-case packet processing work. It is easy

to see that the size of the various Quantum variables in

the algorithm determines the number of packets that can

be serviced from a queue in a round. This means that the

latency for a packet (at low loads) and the throughput of

the router (at high loads) is dependent on the value of the

Quantum variables.

‘l!haorem 4.5 The IIIoJc for Dc$czt Round Robin io O(i),

if for all Z, Quantum, > Max.

Proof: Enqueuing a packet requires finding the queue used

by the flow (O(l) time complexity using hashing since we

ignore collisions), appending the packet to the tail of the

queue, and possibly stealing a buffer (0(1) time using the

technique in [McK91] ). Dequeuing a packet requires deter-

mining the next queue to service by examining the head of

ActweList, and then doing a constant number of operations

(per packet sent from the queue) in order to update the

deficit counter and ActiveLwt. If Quantum z Max, we are

guaranteed to send at least one packet every time we visit

a queue, and thus the worst-case time complexity is 0(1).

•1

In the previous analysis, we showed that if we ignored

collisions introduced by hashing, Deficit Round Robin (DRR)

can achieve a FatrnessIndex that is close to 1 and a Work =

0(1). If we combine DRR with hashing, Fairnesslndex

must be adjusted by the average number of collisions. The

average number of other flows that collide with a flow is

~[CLR90], where n is the number of flows and Q is the

number of queues. For example, if we have 1000 concurrent

flows and 10,000 queues (a factor of 10, which is achiev-

able with modest amounts of memory) the average number

of collisions is 0.1. If B is the bandwidth allocated to a

flow, the effective bandwidth in such a situation becomes

~. Thus assuming a suitable choice of quantum size and

a reasonable number of queues, our overall scheme achieves

a FairnessIndex that is close to 1 and a Work= 0(1).

We compare the FairnessIndex and Work of the fair

queuing algorithms that have been proposed until now in

Figure 1. Deficit Round Robin is the only algorithm that

provides a FairnessIndex of 1 and O(1) Work.

5 Simulation Results

We wish to answer the following questions about the per-

formance of DRR.

We would like to experimentally confirm that DRR

provides isolation superior to FCFS as the theory in-

dicates, especially in the backlogged case.

The theoretical analysis of DRR is for a single router

(i.e., 1 hop). How are the results aifected in a multiple

hop network?

The theoretical analysis of DRR showed fairness un-

der the assumption that all flows were backlogged.

Is the fairness provided by DRR still good when the

flows arrive at different (not backlogged) rates and

with different distributions? Is the fairness sensitive

to packet size dktributions and arrival distributions?

237



Table 1: Performance of Fair Queuing Algorithms

Fair Queuing Algorithm Fairness Index Work Complexity

Fair Queuing ([Nag87] )
Max

O(1) Expected
m

Fair Queuing ([DKS89]) 1 O(log(n))

Stochastic Fair Queuing
Max

m
o(1)

Deficit Round Robin 1 (Expected) o(1)

Since we have multiple effects, we have devised exper-

iments to isolate each of these effects. However, there are

other parameters (such as number of packet buffers and

Flow Index size) that also impact performance. We first

did parametric experiments to determine these values be-

fore investigating our main questions. For lack of space we

only present a few experiments and refer the reader to a

forthcoming report for more details.

5.1 Default Simulation Settings

Unless otherwise specified, the default for all the later ex-

periments is as specified here. We measure the throughput

in terms of delivered bits in a simulation interval, typically

2000 seconds.4

In the single router case (see Figure 5), there are one

or more hosts. Each host has twenty flows, each of which

generates packets at a Poisson average rate of 10 packets/

second. The packet sizes are randomly selected between O

and Mrm packet size (which is 45OO bits). Ill–behaved flows

send packets at thrice the rate at which the other flows

send packets (i.e., 30 packets/second). Each host in such

an experiment is configured to have one ill–behaved flow.

Host #1

I 1

●I I.
.

Host #n

Network Link

Figure 5: Singie router configuration

In Figure 6, we show the typical settings in a multiple

hop topology. There are hosts connected at each hop (a

4Throughput is typically measured in bits/second. However,

it is easy to convert our results into bits/second by dividing by

the simulation time.

router) and each host behaves as as described in the previ-

ous section. In multiple hop routes, where there are more

than twenty flows through a router, we use large buffer sizes

(around 500 packet buffers) to factor out any effects due to

lack of buffers. In multiple hop topologies, all outgoing links

are set at lMbps.

Host #1 Router A Router B Router C Router D
I -— —. .— .—

1* q:wr)~.7+-- Flows —

Llntl
Host #2 Host #3 Hoet #4

Figure 6: Multiple router configuration.

5.2 Comparison of DRR and FCFS

To show how DRR performs with respect to FCFS, we per-

formed the following two experiments. In Figure 7, we use

a single router configuration and one host with twenty flows

sending packets at the default rate through the router. The

only except ion is that Flow 10 is a misbehaving flow. We

use Poisson packet arrivals and random packet sizes. All

parameters used are the default settings. The figures shows

the bandwidth offered to different flows using the FCFS and

DRR queuing disciplines. We find that in FCFS the i~–

behaved flow grabs an arbitrary share of bandwidth, while

in DRR there is nearly perfect fairness.

We further contrast FCFS scheduling with DRR schedul-

ing by examining the throughput offered to each flow at

different stages in a multiple hop topology. The experimen-

tal setup is the default multiple hop topology described in

Section 5.1. The throughput offered is measured at Router

D (see Figure 8). This time we have a number of misbe-

having flows. The figure shows that DRR behaves well in

multihop topologies.

238



2600.0

~ 2100.0
z
x
&.
~

~
2 1600,0
E

1100.0

601).oo~
5,0 10.0 15.0

Flows (in serial order)

_ DRRqueueing
. . FCFSqueueing

Figure i’: This is a plot of the bandwidth offered to flows using

FCFS queuing and DRR, In FCFS, the ill-behaved flow (flow 10)

obtains an arbitrary share of the bandwidth, The isolation property

of DRR is clearly illustrated,

5.3 Independence with respect to Packet

Sizes

We investigate the effect of different packet eize on the fair-

ness properties. The packet sizes in a train of packets can be

modeled as random, constant or bimodal. We use a single

router configuration with one host that has 20 flows. In the

fist experiment, we use random packet sizes. In the next

two experiments, instead of using the random packet sizes,

we first use a constant packet size of 100 bits, and then a

bimodal size varying between 100 and 4500 bits.

Figure 9 shows the lack of any particular pattern in re-

sponse to the usage of different packet sizes in the packet

traffic into the router. The difference in bandwidth offered

to a flow while using the three different packet size distribu-

tions is negligible. The maximum deviation from this figure

while using constant, random and hi-modal cases turned out

to be 0.3%, 0.4699% and 0.32% respectively. Thus DRR

seems fairly insensitive to packet size distributions.

This property becomes clearer when the DRR algorithm

is contrasted with the performance of the SFQ Algorithm.

While using the SFQ algorithm (simulation results not shown

here), flows sending larger packets consistently get higher

throughput than the flows sending random sized packets;

while all flows get equal bandwidth while using DRR.

25.00

22.00

g 19.00

g

5
.
‘a

~ 16.00

13.WI

10.OOO . ..—~
2000 400.0 S00,0 S00.0 70,3(.0

Flow Ids

— DRR
, r FCFS

Figure 8: The bandwidth allocated to different flows at Router D

using FCFS and DRR to schedule the departure of packets,

5.4 Independence with respect to Traff-

ic Patterns

We show that DRR’s performance is independent of the

traffic distribution of the packets entering the router. We

used two models of traffic generators: exponential and con-

stant interarrival times respectively. and collected data on

the number of bytes sent by each of the flows. We then

examined the reeults in the bandwidth obtained. The other

parameters (e.g. number of buffers in the router) are kept

constant at sufficiently Klgh values in thk simulation.

The experiment used a single router configuration with

default settings. The outgoing link bandwidth was set to

10 Kbps. Therefore, if there are 20 input flows each send-

ing at rates higher than O. 5Kbps, there is contention for

the outgoing link bandwidth. We found almost equal band-

width allocation for all flows. The maximum deviation from

the average throughput offered to all flows in the Constant

traffic sources case is 0.3869~o. In the Poisson case it is

bounded by 0.3391% from the average throughput.

DRR appears to work well regardless of the input

distribution.

6 Non-backlogged Analysis

Thus,

traffic

The analysis in Section 4 showed that DRR provides almost

the same throughput to any two backlogged flows that have

the same quantum size (Corollary 4.3). First, note that

Corollary 4.3 compares flows under two assumptions: i) the

execution begins with a deficit counter of O for all flows ii)

the comparison is done at the end of a round. However, it

239



Ewct.d Th,cuhr
\
\
\

00 50 Iuu 13U

D345%

0 469%

Flows (In sam order)
— B,modsl Packet S,zes

* Constant Packet Sms
. Random Packet S,,.,

Figure g: The bandwidth offered to different flows with expo-

nential interpacket times and constant, bimodal and random packet

sizes.

is easy to remove these two assumptions. i) We know from

Lemma 4.1 that the maximum value of the deficit counter

at the start of a round is Max ii) If we examine a flow i

in the middle of a round before it has been serviced, the

maximum discrepancy (compared to examining a flow at

the end of a round), is Quantum,. Thus it is easy to extend

Corollary 4.3 to show that the maximum difference in the

bytes sent by two flows that have the same quantum size Q

during any execution (regardless of how executions begin or

end) is 2 Max + Q. We use this value in the conjecture we

state below.

It is natural to ask whether this result changes if ei-

ther of the two flows are not backlogged at any point. Our

simulations indicate that it does not, but we would like a

theoretical result. Is it possible that a flow loses its quan-

tum size periodically because the queue for the flow is empty

periodically? Intuitively, if a flow is not backlogged at any

instant t,it means that the flow has sent all that it can

possibly sent by time t. Thus if the queue for a flow is

periodically empty and the flow misses round-robin oppor-

tunities, these are opportunities that the flow could not use

anyway. Of course, a flow could be very burst y and have

nothing arrive for a large period (during which it naturally

gets no service) and then have a large amount of data arrive

during a small amount of time. But in that case, other FQ

schemes like bit-by-bit round-robin (BR) will not give the

flow much better treatment.

Thus it is hard to compare the performance of two non-

bacldogged flows because one flow could be much more bursty

and hence have much worse performance. We might con-

sider comparing two flows that have similar probability dis-

tributions for their arrival processes. We can, however,

avoid the need for postulating a priori probability distri-

butions, by comparing the performance of DRR to a fair

scheme like BR for an arbitrary execution. This notion of

competitive analysis was introduced by Sleator and Tarjan

in a seminal paper [ST85].

Consider a set of n flows. Consider an arrival pattern

F which specifies the interarrival times of packets to flows

and identifies the size of each arriving packet and which

flow it belongs to. Consider any arbitrary arrival patterns

F. Assume that F is applied for some time t to two routers

R and R’ which are identical except that R uses DRR while

R’ uses BR. This results in two executions, say E(F, t)and

E’ (F, t). We state the following conjecture:

Conjecture 6.1 For any F and any t and ang flow i, let

sent,, t be the bytes sent in execution E(F, t), and let sen~,t

be dejined similarly. Then for all F, t, and i:

Isent,,t – sent,tl < 2Max+ Quantum,.

If it can be proved, this is an extremely strong result.

It states that the difference in throughput allocated to any

flow z under the DRR and BR disciplines is bounded by a

constant factor regardless of the arrival pattern of packets

for flow i or the other flows.

7 Latency Requirements

Consider a packet p for flow i that arrives at a router.

Assume that the packet is queued for an output link in-

stantly and there are no other packets for flow i at the

rout er. Let s be the size of packet p in bits. If we use

bit-by-bit round-robin then the packet will be delayed by s

round-robin rounds, Assuming that there are no more than

n active flows at any time, this leads to a latency bound

of n * s/B, where B is the bandwidth of the output line in

bits/see. In other words, a small packet can only be delayed

by an amount proportional to its own size by every other

flow. The DKS (Demers–Keshav– Shenker) approximation

only adds a small error factor to this latency bound.

The original motivation in both the work of Nagle and

DKS was the notion of isolation. Isolation is essentially a

throughput issue: we wish to give each flow a fair share

of the overall throughput. In terms of isolation, the proofs

given in the previous section indicate that Deficit Round

Robin is competitive with Fair Queuing. However, the ad-

ditional latency properties of BR and DKS have attracted

considerable interest. In particular, Parekh and Gallager

[PG93] have calculated bounds for end-to-end delay assum-

ing the use of DK S fair queuing at routers and token bucket

traffic shaping at sources.

240



At first glance, Deficit Round Robin (DRR) fails to pro-

vide strong latency bounds. In the example of the arrival of

packet p given above, the latency bound provided by DRR

is ~~ Quantumz
R In other words, a small packet can be

delayed b; a quantum’s worth by every oth~r flow. Thus

in the case where all the quanta are equal to Max (which

is needed to make the work 0( 1)), the ratio of the delay

bounds for DRR and BR is Max/Min.

However, the real motivation behind providing latency

bounds is to allow real-time traffic to have predictable and

dependable performance. Since most traffic will consist of a

mix of best-effort and real-time traffic, the simplest solution

is to reserve a portion of the bandwidth for real-time traffic

and use a separate Fair Queuing algorithm for the real-time

traffic while continuing to use DRR for the best-effort traf-

fic. This allows efficient packet processing for best-effort

traffic; at the same time it allows the use of other fair queu-

ing schemes that provide delay bounds for real-time traffic

at reasonable cost.

As a simple example of combining fair queuing schemes,

consider the following modification of Deficit Round Robin

called DRR+. In DRR+ there are two classes of flows:

latency critical and best-eflort. A latency critical flow must

contract to send no more than x bytes in some period T.

If a latency critical flow ~ meets its contract, whenever a

packet for flow ~ arrives to an empty flow ~ queue, the flow

f is placed at the head of the round-robin lw-t.

Suppose for instance that each latency critical flow guar-

antees to send at most a single packet (of size at most s)

every T seconds. Assume that T is large enough to service

one packet of every latency critical flow as well as one quan-

tum’s worth for every other flow. Then if all latency critical

flows meet their contract, it appears that each latency crit-

ical flow is at most delayed by ((n’ * s ) + Max) /B, where

n’ is the number of latency critical flows. In other words,

a latency critical flow is delayed by one small packet from

every other latency critical flow, as well as an error term

of one maximum size packet (the error term is inevitable in

all schemes unless the router preempts large packets). In

this simple case, the final bound appears better than the

DKS bound because a latency critical flow is only delayed

by other latency critical flows.

In the simple case, it is easy to police the contract for

latency critical flows. A single bit that is part of the state

of such a flow is cleared whenever a timer expires and is

set whenever a packet arrives; the timer is reset for T time

units when a packet arrives. Finally, if a packet arrives and

the bit is set, the flow has violated its contract; an effective

(but user-friendly) countermeasure is to place the flow ID

of a deviant flow at the end of the round-robin list. This

effectively moves the flow from the class of latency critical

flows to the class of best effort flows.

DRR+ is a simple example of combining DRR with

other fair queuing algorithms to handle latency critical flows,

By using other schemes for the latency critical flows, we can

provide better bounds while allowing more general traffic

shaping rules.

8 Conclusions

We have described a new scheme, Deficit Round Robin

(DRR), that provides near-perfect isolation at very low im-

plementation cost. As far as we know, this is the first fair

queuing solution that provides near-perfect throughput fair-

ness with 0(1 ) packet processing. DRR should be at trac-

tive to use while implementing Fair Queuing at gateways

and routers.

We have described theorems that describe the behavior

of DRR in backlogged traffic scenarios. We have not com-

pletely understood its behavior in non–backlogged cases,

though we have conjectured that its throughput differs from

the behavior of bit-by-bit round robin by at most a constant

additive factor. Our simulations support this conjecture and

indicate that DRR works as well in non–backlogged cases.

The Quantum size required for keeping the work O(1) is

high (at least equal to Maz). We feel that while Fair Queu-

ing using DRR is general enough for any kind of network,

it is best suited for datagram networks. In ATM networks,

packets are fixed size cells; therefore Nagle’s solution (simple

round robin) will work as well as DRR. However, if connec-

tions in an ATM network require weighted fair queuing with

arbitrary weights, DRR will be useful.

DRR can be combined with other FQ algorithms such

that DRR is used to service only the best-effort traffic. We

described a trivial combination algorithm called DRR+ that

offers good latency bounds to Latency Crit icai flows as long

as they meet their contracts. However, even if the source

meets the contract, the contract may be violated due to

“bunching” effects at intermediate routers. Thus other com-

binations need to be investigated. Recall that DRR requires

having the quantum size be at least a maximum size packet

in order for the packet processing work to be low; thk does

affect delay bounds.

We believe that DRR should be easy to implement using

existing technology. It only requires a few instructions be-

yond the simplest queuing algorithm (FCFS), and this addi-

tion should be a small percentage of the instructions needed

for routing packets. The memory needs are also modest;

6K size memory should give a small number of collisions for

about 100 concurrent flows. This is a small amount of ex-

tra memory compared to the buffer memory used in many

routers. Note that the buffer size requirements should be

241



identical to the buffering for FCFS because in DRR buffers

areshared between queues using McKenney ’s buffer stealing

algorithm.

Lastly, we note that deficit round robin schemes can

be applied to other scheduling contextsin which jobs must

be serviced as whole units. In other words, jobs cannot

be servedin several “time slices” as in a typical operating

system. This is true for packet scheduling because packets

cannot be interleaved on the output lines, but it is true for

other contexts as well. Note also that DRR is applicable to

distributed queues because it needs only local information

to implement. For instance, the current 802.5 token ring

uses token holding timers that limit the number of bits a

station can send at each token opportunity. If a station’s

packets do not fit exactly into the allowed number of bits,

theremainder is not kept track off this allows thepossibil-

ity of unfairness. The unfairness can easily be removed by

keeping a deficit counter at each ring node and by a small

modification to the token ring protocol.

Another application is load balancing or, as it is some-

times termed, striping. Consider a router that has traffic

arriving on a high speed line that needs to be sent out to

a destination over multiple slower speed lines. If the router

sends packets from the fast link in a round robin fashion

across the slower links, then the load may not balance per-

fectly if the packet sizes are highly variable. For exam-

ple, if packets alternate between large and small packets,

then round robin across two lines can cause the second line

to be underutilized. But load balancing is almost the in-

verse of fair queuing. It is is not hard to see that deficit

round robin solves the problem; we send up to to a quan-

tum limit per output line but we keep track of deficits. This

should produce nearly perfect load balancing; as usual it

can be extended to weighted load balancing. In [APV95],

we show how to obtain perfect load balancing and yet guar-

antee FIFO delivery. Our load balancing scheme [.APV95]

appears to be a novel solution to a very old problem.

For these reasons, we believe that deficit round robin

scheduling is a general and useful tool. We hope our readers

will use it in other contexts.

Acknowledgments: A number of people listened pa-

tiently to our ideas and provided us with valuable feedback.

Prominent among them are: Dave Clark, Sally Floyd, Andy

Fingerhut, Srinivasan Keshav, Paul McKenney, and Lixia

Zhang. We thank Andy Fingerhut and S. Keshav for them

careful reading of the paper. We thank R. Gopalakrishnan

and Apost olos Dalianis for valuable discussions.

References

[APV95]

[CLR90]

[DKS89]

[Flo93a]

[Flo93b]

[GM90]

[G0194]

[JR86]

[Kes91]

[MCK91]

[Nag87]

[PG93]

[SA94]

[ST85]

[Zha91]

H. Adiseshu, G. Parulkar, and G. Varghese. Re-

iiable FIFO Load Balanctng over Multiple FIFO

Channels. Washington University Technical Re-

port 95-11, available by FTP.

T. Cormen, C. Leiserson, and R. Rivest. intro-

duction to Algorithms. MIT Press/McGraw-Hill,

1990.

A. Demers, S. Keshav, and S. Shenker. Analysis

and simulation of a fair queueing algorithm. Proc.

Stgcornm ’89, 19(4):1-12, September 1989.

S. Floyd. Notes on guaranteed service in resource

management. Unpublished note. 1993.

S. Floyd. Personal communication. 1993.

A. Greenberg and N. Madras. How fair is fair

queueing. In Proc. Performance ’90, 1990.

S. Golestani. A self clocked fair queueing scheme

for broadband applications. In Proc. IEEE Info-

comm ’94, 1994.

R. Jain and S. Routhier. Packet trains measure-

ment and a new model for computer netwoek traf-

fic. IEEE Journal on Selected Areas zn Commu -

n~cations, Sept. 1986.

S. Keshav. On the efficient implementation of fair

queueing. In Internetworking: Research and Ex-

perience VOL2, 157-17.3, September 1991.

P. McKenney. Stochastic fairness queueing. In

Internetworking: Research and Experience VO1.2,

113-131, January 1991.

John Nagle. On packet switches with infinite stor-

age. IEEE Trans. on Comm., COM-35(4), April

1987.

A. K. Parekh and R. G. Gallagher. A general-

ized processor sharing approach to flow control in

integrated services networks. In Proc. IEEE ln~o -

comm ’93.

D. Saha and M. Saksena and S. Mukherjee and

S. Tripathi. On Guaranteed Delivery of Time-

Critical Messages in DQDB. In Proc, IEEE lnfo-

comm ’94.

D.D. Sleator and R.E. Tarjan. Amortized effi-

cienc y of list update and paging rules. Comm.

ACM, 28(2):202-208, 1985.

L. Zhang. Virtual clock: A new traffic control

algorithm for packet switched networks. ACM

Trans. on Computer Systems, 9(2):101-125, May

1991.

242


