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Lecture 4: Pipeline Complications:
Data and Control Hazards

Professor Alvin R. Lebeck
Computer Science 220

Fall 2001
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Administrative

• Homework #1 Due Tuesday, September 11
• Start Reading Chapter 4
• Projects
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Review: A Single Cycle Processor
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Review: Pipelining Lessons

• Pipelining doesn’t help 
latency of single task, it 
helps throughput of 
entire workload

• Pipeline rate limited by 
slowest pipeline stage

• Multiple tasks operating 
simultaneously

• Potential speedup = 
Number pipe stages

• Unbalanced lengths of 
pipe stages reduces 
speedup

• Time to “fill” pipeline and 
time to “drain” it reduces 
speedup
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• Ifetch: Instruction Fetch
– Fetch the instruction from the Instruction Memory

• Reg/Dec: Registers Fetch  and Instruction Decode
• Exec: Calculate the memory address
• Mem: Read the data from the Data Memory
• WrB: Write the data back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WrBLoad

Review: The Five Stages of a Load
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• The five independent pipeline stages are:
– Read Next Instruction: The Ifetch stage.
– Decode Instruction and fetch register values: The Reg/Dec stage
– Execute the operation: The Exec stage.
– Access Data-Memory: The Mem stage.
– Write Data to Destination Register: The WrB stage

• One instruction enters the pipeline every cycle
– One instruction comes out of the pipeline (completed) every cycle
– The “Effective” Cycles per Instruction  (CPI) is 1;  ~1/5 cycle time

Clock
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

Ifetch Reg/Dec Exec Mem WrB1st lw

Ifetch Reg/Dec Exec Mem WrB2nd lw

Ifetch Reg/Dec Exec Mem WrB3rd lw

Review: Pipelining the Load Instruction
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• Delay R-type’s register write by one cycle:
– Now R-type instructions also use Reg File’s write port at Stage 5
– Mem stage is a NO-OP stage: nothing is being done. Effective CPI?

Clock
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem WrBR-type

Ifetch Reg/Dec Mem WrBR-type

Ifetch Reg/Dec Exec Mem WrBLoad

Ifetch Reg/Dec Mem WrBR-type

Ifetch Reg/Dec Mem WrBR-type

Exec

Exec

Exec

Exec

Ifetch Reg/Dec Exec WrR-type Mem
1 2 3 4 5

Review: Delay R-type’s Write by One Cycle
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Its Not That Easy for Computers

• What could go wrong?
• Limits to pipelining: Hazards prevent next instruction 

from executing during its designated clock cycle
– Structural hazards: HW cannot support this combination of 

instructions
– Data hazards: Instruction depends on result of prior instruction still 

in the pipeline
– Control hazards: Pipelining of branches & other instructions
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Speed Up Equation for Pipelining

Speedup from pipelining = Ave Instr Time unpipelined
Ave Instr Time pipelined

= CPIunpipelined x Clock Cycleunpipelined
CPIpipelined x Clock Cyclepipelined

= CPIunpipelined Clock Cycleunpipelined  
CPIpipelined        Clock Cyclepipelined

Ideal CPI = CPIunpipelined/Pipeline depth

Speedup = Ideal CPI x Pipeline depth   Clock Cycleunpipelined  
CPIpipelined                   Clock Cyclepipelined

x

x
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Speed Up Equation for Pipelining

CPIpipelined = Ideal CPI + Pipeline stall clock cycles per instr

Speedup = Ideal CPI x Pipeline depth       Clock Cycleunpipelined
Ideal CPI + Pipeline stall CPI   Clock Cyclepipelined

Speedup =     Pipeline depth       Clock Cycleunpipelined
1 + Pipeline stall CPI   Clock Cyclepipelined

x

x

CPS 220 12© Alvin R. Lebeck 2001

Example: Dual-port vs. Single-port

• Machine A: Dual ported memory
• Machine B: Single ported memory, but its pipelined 

implementation has a 1.05 times faster clock rate
• Ideal CPI = 1 for both
• Loads are 40% of instructions executed

SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)
= Pipeline Depth

SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) 
x (clockunpipe/(clockunpipe / 1.05)

= (Pipeline Depth/1.4) x  1.05
= 0.75 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

• Machine A is 1.33 times faster 
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Three Generic Data Hazards

• InstrI followed by InstrJ

• Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it
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Three Generic Data Hazards

• InstrI followed by InstrJ

• Write After Read (WAR)
InstrJ tries to write operand before InstrI reads it

• Can’t happen in DLX 5 stage pipeline because:
– All instructions take 5 stages, 
– Reads are always in stage 2, and 
– Writes are always in stage 5
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Three Generic Data Hazards

• InstrI followed by InstrJ

• Write After Write (WAW)
InstrJ tries to write operand before InstrI writes it

– Leaves wrong result ( InstrI not InstrJ)

• Can’t happen in DLX 5 stage pipeline because: 
– All instructions take 5 stages, and 
– Writes are always in stage 5

• Will see WAR and WAW in later more complicated 
pipes

16© Alvin R. Lebeck 2001

• We must deal with instruction dependencies.
• Example:

sub $2, $1, $3
and $12, $2, $5 # $12 depends on the result in $2
or  $13, $6, $2 # but $2 is updated 3 clock
add $14, $2, $2 # cycles later.
sw  $15, 100($2) # We have a problem!! Data Hazard

Clock
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

Ifetch Reg/Dec Exec Mem WrB0: sub

Ifetch Reg/Dec Exec Mem WrB4: and

Ifetch Reg/Dec Exec Mem WrB8: or

Ifetch Reg/Dec Exec Mem WrB12: add
Ifetch Reg/Dec Exec Mem WrB16: sw

Data Hazards
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• Load is fetched during Cycle 1:
– The data is NOT written into the Reg  File until the end of Cycle 5
– We cannot read this value from the Reg File until Cycle 6
– 3-instruction delay  before the load  takes effect

• This is a Data Hazard:
– Register forwarding reduces the load delay to ONE instruction

– It is not possible to entirely eliminate the load Data Hazard!

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

Ifetch Reg/Dec Exec Mem WrI0: Load

Ifetch Reg/Dec Exec Mem WrPlus 1

Ifetch Reg/Dec Exec Mem WrPlus 2

Ifetch Reg/Dec Exec Mem WrPlus 3

Ifetch Reg/Dec Exec Mem WrPlus 4

RAW Data Hazard for Load
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• There are two ways to deal with the load data hazard:
– Insert a NOOP bubble into the data path.
– Use Delayed load semantic (see a next slide)
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Delayed Load

• Load instructions are defined such that immediate 
successor instruction will not read result of load.

BAD
ld r1, 8(r2)
sub r3, r1, r3
add r2, r2, 4

OK
ld r1, 8(r2)
add r2, r2, 4
sub r3, r1, r3
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Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f in memory. 
Slow code:

LW Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW  a,Ra 
LW Re,e 
LW Rf,f
SUB Rd,Re,Rf
SW d,Rd

Software Scheduling to Avoid Load Hazards

Fast code:
LW Rb,b
LW Rc,c
LW Re,e 
ADD Ra,Rb,Rc
LW Rf,f
SW  a,Ra 
SUB Rd,Re,Rf
SW d,Rd
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Compiler Avoiding Load Stalls

% loads stalling pipeline

0% 20% 40% 60% 80%

tex

spice

gcc
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scheduled unscheduled
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Review: Data Hazards

• RAW
– only one that can occur in DLX pipeline

• WAR
• WAW
• Data Forwarding (Register Bypassing)

– send data from one stage to another bypassing the register file

• Still have load use delay
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Pipelining Summary

• Just overlap tasks, and easy if tasks are independent
• Speed Up ~ Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources
– Data: need forwarding, compiler scheduling
– Control: discuss today

• Branches and Other Difficulties
• What makes branches difficult?

Speedup =
Pipeline Depth

1 + Pipeline stall CPI
X

Clock Cycle Unpipelined

Clock Cycle Pipelined
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Control Hazard on Branches: Three Stage Stall
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• Although Beq is fetched during Cycle 4:
– Target address is NOT written into the PC until the end of Cycle 7
– Branch’s target is NOT fetched until Cycle 8
– 3-instruction delay  before the branch take effect

• This is called a Control Hazard:

12: Beq
(target is 1000)

Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 Cycle 11

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr16: R-type

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr24: R-type

20: R-type

Clk

Ifetch Reg/Dec Exec Mem Wr1000: Target of Br

Control Hazard
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Branch Stall Impact

• If CPI = 1, 30% branch, Stall 3 cycles => new CPI = 1.9!
• How can you reduce this delay?
• Two part solution:

– Determine branch taken or not sooner, AND
– Compute taken branch address earlier

• DLX branch tests if register = 0 or != 0
• DLX Solution:

– Move Zero test to ID/RF stage
– Adder to calculate new PC in ID/RF stage
– 1 clock cycle penalty for branch versus 3
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Example:
sub $10, $4, $8
beq $10, $3, go
add $12, $2, $5
. . .

go: lw  $4, 16($12)
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Branch Hazard

• Can we eliminate the effect of this one cycle branch 
delay?
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Four Branch Hazard Alternatives

#1: Stall until branch direction is clear
#2: Predict Branch Not Taken

– Execute successor instructions in sequence
– “Squash” instructions in pipeline if branch actually taken
– Advantage of late pipeline state update
– 47% DLX branches not taken on average
– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% DLX branches taken on average
– But haven’t calculated branch target address in DLX

» DLX still incurs 1 cycle branch penalty
» Other machines: branch target known before outcome
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Four Branch Hazard Alternatives

#4: Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

– 1 slot delay allows proper decision and branch target 
address in 5 stage pipeline

– DLX uses this

Branch delay of length n
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Delayed Branch

• Where to get instructions to fill branch delay slot?
– Before branch instruction
– From the target address: only valuable when branch taken
– From fall through: only valuable when branch not taken
– Cancelling branches allows more slots to be filled

• Compiler effectiveness for single branch delay slot:
– Fills about 60% of branch delay slots
– About 80% of instructions executed in branch delay slots useful in 

computation
– About 50% (60% x 80%) of slots usefully filled
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Evaluating Branch Alternatives

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Stall pipeline 3 1.42 3.5 1.0
Predict taken 1 1.14 4.4 1.26
Predict not taken 1 1.09 4.5 1.29
Delayed branch 0.5 1.07 4.6 1.31

Branches = 14% of insts, 65% of them change PC

Pipeline speedup = Pipeline depth
1 +Branch frequency ? Branch penalty
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Compiler “Static” Prediction of
Taken/Untaken Branches

• Improves strategy for placing instructions in delay slot
• Two strategies

– Backward branch predict taken, forward branch not taken
– Profile-based prediction: record branch behavior, predict branch 

based on prior run
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Evaluating Static Branch Prediction

• Misprediction
ignores frequency 
of branch

• “Instructions 
between
mispredicted
branches” is a 
better metric
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Pipelining Complications

• Interrupts (Exceptions)
– 5 instructions executing in 5 stage pipeline
– How to stop the pipeline?
– How to restart the pipeline?
– Who caused the interrupt?

Stage Problem interrupts occurring
IF Page fault on instruction fetch; misaligned memory 

access; memory-protection violation
ID Undefined or illegal opcode
EX Arithmetic interrupt
MEM Page fault on data fetch; misaligned memory 

access; memory-protection violation
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Pipelining Complications

• Simultaneous exceptions in > 1 pipeline stage
– Load with data page fault in MEM stage
– Add with instruction page fault in IF stage

• Solution #1
– Interrupt status vector per instruction
– Defer check til last stage, kill state update if exception

• Solution #2
– Interrupt ASAP
– Restart everything that is incomplete

• Exception in branch delay slot, 
– SW needs two PCs

• Another advantage for state update late in 
pipeline!
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Next Time

• Next time
– More pipeline complications
– Longer pipelines (R4000) => Better branch prediction, more 

instruction parallelism?

Todo
• Read Chapter 3 and 4
• Homework #1 due
• Project selection by September 30
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Pipeline Complications

• Complex Addressing Modes and Instructions
• Address modes: Autoincrement causes register 

change during instruction execution
– Interrupts? Need to restore register state
– Adds WAR and WAW hazards since writes no longer last stage

• Memory-Memory Move Instructions
– Must be able to handle multiple page faults
– Long-lived instructions: partial state save on interrupt

• Condition Codes
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IF ID/RF

EX MEM

WB

M1 M2 M3 M4 M5 M6 M7

A1 A2 A3 A4

FP/INT Divide Unit 
Not Pipelined

25 Clocks

Pipeline Complications: Floating Point
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Pipelining Complications

• Floating Point: long execution time
• Also, may pipeline FP execution unit so they can 

initiate new instructions without waiting full latency

FP Instruction Latency Initiation Rate (MIPS R4000)
Add, Subtract 4 3
Multiply 8 4
Divide 36 35 (interrupts,
Square root 112 111 WAW, WAR)
Negate 2 1
Absolute value 2 1
FP compare 3 2

Cycles before 
use result

Cycles before issue
instr of same type
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Summary of Pipelining Basics

• Hazards limit performance
– Structural: need more HW resources
– Data: need forwarding, compiler scheduling
– Control: early evaluation & PC, delayed branch, prediction

• Increasing length of pipe increases impact of 
hazards; pipelining helps instruction bandwidth, not 
latency

• Compilers reduce cost of data and control hazards
– Load delay slots
– Branch delay slots
– Branch prediction

• Interrupts, Instruction Set, FP makes pipelining 
harder

• Handling context switches.
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Case Study: MIPS R4000 
(100 MHz to 200 MHz)

• 8 Stage Pipeline:
– IF–first half of fetching of instruction; PC selection happens here as 

well as initiation of instruction cache access.
– IS–second half of access to instruction cache. 
– RF–instruction decode and register fetch, hazard checking and also 

instruction cache hit detection.
– EX–execution, which includes effective address calculation, ALU 

operation, and branch target computation and condition evaluation.
– DF–data fetch, first half of access to data cache.
– DS–second half of access to data cache.
– TC–tag check, determine whether the data cache access hit.
– WB–write back for loads and register-register operations.

• 8 Stages: What is impact on Load delay? Branch 
delay? Why?
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Case Study: MIPS R4000
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TWO Cycle
Load Latency
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THREE Cycle
Branch Latency
(conditions evaluated
during EX phase)
Delay slot plus two stalls
Branch likely cancels delay slot if not taken
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MIPS R4000 Floating Point

• FP Adder, FP Multiplier, FP Divider
• Last step of FP Multiplier/Divider uses FP Adder HW
• 8 kinds of stages in FP units:

– Stage Functional unit Description
– A FP adder Mantissa ADD stage 
– D FP divider Divide pipeline stage
– E FP multiplier Exception test stage
– M FP multiplier First stage of multiplier
– N FP multiplier Second stage of multiplier
– R FP adder Rounding stage
– S FP adder Operand shift stage
– U Unpack FP numbers
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MIPS FP Pipe Stages

FP Instr 1 2 3 4 5 6 7 8 …
Add, Subtract U S+A A+R R+S
Multiply U E+M M M M N N+A R
Divide U A R D28 … D+A D+R, D+R, D+A, D+R, A, R
Square root U E (A+R)108 … A R
Negate U S
Absolute value U S
FP compare U A R
Stages:

M First stage of multiplier
N Second stage of multiplier
R Rounding stage
S Operand shift stage
U Unpack FP numbers

A Mantissa ADD stage 
D Divide pipeline stage
E Exception test stage
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R4000 Performance
• Not ideal CPI of 1:

– Load stalls (1 or 2 clock cycles)
– Branch stalls (2 cycles + unfilled slots)
– FP result stalls: RAW data hazard (latency)
– FP structural stalls: Not enough FP hardware (parallelism)
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Next Time

• Homework #1 is Due
• Instruction Level Parallelism (ILP)
• Read Chapter 4


