
1

Page 1

Lecture 4: Pipeline Complications:
Data and Control Hazards

Professor Alvin R. Lebeck
Computer Science 220

Fall 2001

CPS 220 2© Alvin R. Lebeck 2001

Administrative

• Homework #1 Due Tuesday, September 11
• Start Reading Chapter 4
• Projects

2

Page 2

CPS 220 3© Alvin R. Lebeck 2001

Review: A Single Cycle Processor

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

Mux

3216imm16

ALUSrc

ExtOp

M
ux

MemtoReg

Clk

Data In
WrEn

32
Adr

Data
Memory

32

MemWr

A
L

U

Instruction
Fetch Unit

Clk

Zero

Instruction<31:0>

Jump

Branch

0

1

0

1

01

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRsRt

Main
Control

op
6

ALU
Controlfunc

6
3

ALUop
ALUctr

3RegDst
ALUSrc

:
Instr<5:0>

Instr<31:26>

Instr<15:0>

CPS 220 4© Alvin R. Lebeck 2001

Review: Pipelining Lessons

• Pipelining doesn’t help
latency of single task, it
helps throughput of
entire workload

• Pipeline rate limited by
slowest pipeline stage

• Multiple tasks operating
simultaneously

• Potential speedup =
Number pipe stages

• Unbalanced lengths of
pipe stages reduces
speedup

• Time to “fill” pipeline and
time to “drain” it reduces
speedup

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

3

Page 3

5© Alvin R. Lebeck 2001

• Ifetch: Instruction Fetch
– Fetch the instruction from the Instruction Memory

• Reg/Dec: Registers Fetch and Instruction Decode
• Exec: Calculate the memory address
• Mem: Read the data from the Data Memory
• WrB: Write the data back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WrBLoad

Review: The Five Stages of a Load

6© Alvin R. Lebeck 2001

• The five independent pipeline stages are:
– Read Next Instruction: The Ifetch stage.
– Decode Instruction and fetch register values: The Reg/Dec stage
– Execute the operation: The Exec stage.
– Access Data-Memory: The Mem stage.
– Write Data to Destination Register: The WrB stage

• One instruction enters the pipeline every cycle
– One instruction comes out of the pipeline (completed) every cycle
– The “Effective” Cycles per Instruction (CPI) is 1; ~1/5 cycle time

Clock
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

Ifetch Reg/Dec Exec Mem WrB1st lw

Ifetch Reg/Dec Exec Mem WrB2nd lw

Ifetch Reg/Dec Exec Mem WrB3rd lw

Review: Pipelining the Load Instruction

4

Page 4

7© Alvin R. Lebeck 2001

• Delay R-type’s register write by one cycle:
– Now R-type instructions also use Reg File’s write port at Stage 5
– Mem stage is a NO-OP stage: nothing is being done. Effective CPI?

Clock
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem WrBR-type

Ifetch Reg/Dec Mem WrBR-type

Ifetch Reg/Dec Exec Mem WrBLoad

Ifetch Reg/Dec Mem WrBR-type

Ifetch Reg/Dec Mem WrBR-type

Exec

Exec

Exec

Exec

Ifetch Reg/Dec Exec WrR-type Mem
1 2 3 4 5

Review: Delay R-type’s Write by One Cycle

8© Alvin R. Lebeck 2001

IF/ID
 R

egister

ID
/E

x R
egister

E
x/M

em
R

egister

M
em

/W
r

R
egister

PC

Data
Mem

WA
Di

RA Do

IF_U
nit

A

I

RFile
Di

Ra

Rb

Rw

MemWr

RegWr ExtOp

Exec
Unit

busA
busB

Imm16

ALUOp

ALUSrc

M
ux

1

0

MemtoReg

1
0

RegDst

Rt

Rd

Imm16

PC+4 PC+4

Rs

Rt

PC
+4

Zero

Branch

1
0

Clk

Ifetch Reg/Dec Exec Mem WrB

EX
Unit

Review: A Pipelined Datapath

5

Page 5

CPS 220 9© Alvin R. Lebeck 2001

Its Not That Easy for Computers

• What could go wrong?
• Limits to pipelining: Hazards prevent next instruction

from executing during its designated clock cycle
– Structural hazards: HW cannot support this combination of

instructions
– Data hazards: Instruction depends on result of prior instruction still

in the pipeline
– Control hazards: Pipelining of branches & other instructions

CPS 220 10© Alvin R. Lebeck 2001

Speed Up Equation for Pipelining

Speedup from pipelining = Ave Instr Time unpipelined
Ave Instr Time pipelined

= CPIunpipelined x Clock Cycleunpipelined
CPIpipelined x Clock Cyclepipelined

= CPIunpipelined Clock Cycleunpipelined
CPIpipelined Clock Cyclepipelined

Ideal CPI = CPIunpipelined/Pipeline depth

Speedup = Ideal CPI x Pipeline depth Clock Cycleunpipelined
CPIpipelined Clock Cyclepipelined

x

x

6

Page 6

CPS 220 11© Alvin R. Lebeck 2001

Speed Up Equation for Pipelining

CPIpipelined = Ideal CPI + Pipeline stall clock cycles per instr

Speedup = Ideal CPI x Pipeline depth Clock Cycleunpipelined
Ideal CPI + Pipeline stall CPI Clock Cyclepipelined

Speedup = Pipeline depth Clock Cycleunpipelined
1 + Pipeline stall CPI Clock Cyclepipelined

x

x

CPS 220 12© Alvin R. Lebeck 2001

Example: Dual-port vs. Single-port

• Machine A: Dual ported memory
• Machine B: Single ported memory, but its pipelined

implementation has a 1.05 times faster clock rate
• Ideal CPI = 1 for both
• Loads are 40% of instructions executed

SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)
= Pipeline Depth

SpeedUpB = Pipeline Depth/(1 + 0.4 x 1)
x (clockunpipe/(clockunpipe / 1.05)

= (Pipeline Depth/1.4) x 1.05
= 0.75 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

• Machine A is 1.33 times faster

7

Page 7

CPS 220 13© Alvin R. Lebeck 2001

Three Generic Data Hazards

• InstrI followed by InstrJ

• Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

CPS 220 14© Alvin R. Lebeck 2001

Three Generic Data Hazards

• InstrI followed by InstrJ

• Write After Read (WAR)
InstrJ tries to write operand before InstrI reads it

• Can’t happen in DLX 5 stage pipeline because:
– All instructions take 5 stages,
– Reads are always in stage 2, and
– Writes are always in stage 5

8

Page 8

CPS 220 15© Alvin R. Lebeck 2001

Three Generic Data Hazards

• InstrI followed by InstrJ

• Write After Write (WAW)
InstrJ tries to write operand before InstrI writes it

– Leaves wrong result (InstrI not InstrJ)

• Can’t happen in DLX 5 stage pipeline because:
– All instructions take 5 stages, and
– Writes are always in stage 5

• Will see WAR and WAW in later more complicated
pipes

16© Alvin R. Lebeck 2001

• We must deal with instruction dependencies.
• Example:

sub $2, $1, $3
and $12, $2, $5 # $12 depends on the result in $2
or $13, $6, $2 # but $2 is updated 3 clock
add $14, $2, $2 # cycles later.
sw $15, 100($2) # We have a problem!! Data Hazard

Clock
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

Ifetch Reg/Dec Exec Mem WrB0: sub

Ifetch Reg/Dec Exec Mem WrB4: and

Ifetch Reg/Dec Exec Mem WrB8: or

Ifetch Reg/Dec Exec Mem WrB12: add
Ifetch Reg/Dec Exec Mem WrB16: sw

Data Hazards

9

Page 9

17© Alvin R. Lebeck 2001

Rd

Rt
Rs

Forwarding
Unit

Forward A

Forward B

Registers
Data
Memory

ID/EX EX/MEM MEM/WB

ALU

RAW Data Hazard Solution: Register Forwarding

18© Alvin R. Lebeck 2001

• Load is fetched during Cycle 1:
– The data is NOT written into the Reg File until the end of Cycle 5
– We cannot read this value from the Reg File until Cycle 6
– 3-instruction delay before the load takes effect

• This is a Data Hazard:
– Register forwarding reduces the load delay to ONE instruction

– It is not possible to entirely eliminate the load Data Hazard!

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

Ifetch Reg/Dec Exec Mem WrI0: Load

Ifetch Reg/Dec Exec Mem WrPlus 1

Ifetch Reg/Dec Exec Mem WrPlus 2

Ifetch Reg/Dec Exec Mem WrPlus 3

Ifetch Reg/Dec Exec Mem WrPlus 4

RAW Data Hazard for Load

10

Page 10

19© Alvin R. Lebeck 2001

Rd

Rt
Rs

Forwarding
Unit

Forward A

Forward B

Registers
Data
Memory

ID/EX EX/MEM MEM/WB

Load Data Forwarding

20© Alvin R. Lebeck 2001

• There are two ways to deal with the load data hazard:
– Insert a NOOP bubble into the data path.
– Use Delayed load semantic (see a next slide)

IF/ID
 R

egister

ID
/E

x R
egister

E
x/M

em
R

egister

M
em

/W
r

R
egister

PC

Data
Me
m

WA
Di

RA Do

IF_U
nit

A

I

RFile
Di

Ra

Rb

Rw

MemWr

RegWr ExtOp

Exec
Unit

busA
busB

Imm16

ALUOp

ALUSrc

M
ux

1

0

MemtoReg

1
0

RegDst

Rt
Rd

Imm16
PC+4 PC+4

Rs

Rt

PC
+4

Zero

Branch

1
0

EX
Unit

Insert NOOP Here
Stall0 Stall1 Stall2

How?

Dealing with the Load Data Hazard

11

Page 11

21© Alvin R. Lebeck 2001

Delayed Load

• Load instructions are defined such that immediate
successor instruction will not read result of load.

BAD
ld r1, 8(r2)
sub r3, r1, r3
add r2, r2, 4

OK
ld r1, 8(r2)
add r2, r2, 4
sub r3, r1, r3

CPS 220 22© Alvin R. Lebeck 2001

Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f in memory.
Slow code:

LW Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW a,Ra
LW Re,e
LW Rf,f
SUB Rd,Re,Rf
SW d,Rd

Software Scheduling to Avoid Load Hazards

Fast code:
LW Rb,b
LW Rc,c
LW Re,e
ADD Ra,Rb,Rc
LW Rf,f
SW a,Ra
SUB Rd,Re,Rf
SW d,Rd

12

Page 12

CPS 220 23© Alvin R. Lebeck 2001

Compiler Avoiding Load Stalls

% loads stalling pipeline

0% 20% 40% 60% 80%

tex

spice

gcc

25%

14%

31%

65%

42%

54%

scheduled unscheduled

CPS 220 24© Alvin R. Lebeck 2001

Review: Data Hazards

• RAW
– only one that can occur in DLX pipeline

• WAR
• WAW
• Data Forwarding (Register Bypassing)

– send data from one stage to another bypassing the register file

• Still have load use delay

13

Page 13

CPS 220 25© Alvin R. Lebeck 2001

Pipelining Summary

• Just overlap tasks, and easy if tasks are independent
• Speed Up ~ Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources
– Data: need forwarding, compiler scheduling
– Control: discuss today

• Branches and Other Difficulties
• What makes branches difficult?

Speedup =
Pipeline Depth

1 + Pipeline stall CPI
X

Clock Cycle Unpipelined

Clock Cycle Pipelined

CPS 220 26© Alvin R. Lebeck 2001

Control Hazard on Branches: Three Stage Stall

I D

I D

I D

I D

I D

cc1 cc2 cc3 cc
4

cc
5

cc
6

cc
7

cc
8

cc
9

time

beq r1, foo

add r3, r4, r6

and r3, r2, r4

sub r2, r3, r5

add r3, r2, r5

14

Page 14

• Although Beq is fetched during Cycle 4:
– Target address is NOT written into the PC until the end of Cycle 7
– Branch’s target is NOT fetched until Cycle 8
– 3-instruction delay before the branch take effect

• This is called a Control Hazard:

12: Beq
(target is 1000)

Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 Cycle 11

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr16: R-type

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr24: R-type

20: R-type

Clk

Ifetch Reg/Dec Exec Mem Wr1000: Target of Br

Control Hazard

CPS 220 28© Alvin R. Lebeck 2001

Branch Stall Impact

• If CPI = 1, 30% branch, Stall 3 cycles => new CPI = 1.9!
• How can you reduce this delay?
• Two part solution:

– Determine branch taken or not sooner, AND
– Compute taken branch address earlier

• DLX branch tests if register = 0 or != 0
• DLX Solution:

– Move Zero test to ID/RF stage
– Adder to calculate new PC in ID/RF stage
– 1 clock cycle penalty for branch versus 3

15

Page 15

29© Alvin R. Lebeck 2001

Example:
sub $10, $4, $8
beq $10, $3, go
add $12, $2, $5
. . .

go: lw $4, 16($12)

IF/ID ID/EX
4

sign Extend

+

<<2

=

Bus A

Bus B

PC
Instruction
Memory

Registers

Rt

Rd

Imm

Rt

Rs

Control &
Hazards

+

Branch Delays

30© Alvin R. Lebeck 2001

Branch Hazard

• Can we eliminate the effect of this one cycle branch
delay?

16

Page 16

CPS 220 31© Alvin R. Lebeck 2001

Four Branch Hazard Alternatives

#1: Stall until branch direction is clear
#2: Predict Branch Not Taken

– Execute successor instructions in sequence
– “Squash” instructions in pipeline if branch actually taken
– Advantage of late pipeline state update
– 47% DLX branches not taken on average
– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% DLX branches taken on average
– But haven’t calculated branch target address in DLX

» DLX still incurs 1 cycle branch penalty
» Other machines: branch target known before outcome

CPS 220 32© Alvin R. Lebeck 2001

Four Branch Hazard Alternatives

#4: Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

– 1 slot delay allows proper decision and branch target
address in 5 stage pipeline

– DLX uses this

Branch delay of length n

17

Page 17

CPS 220 33© Alvin R. Lebeck 2001

Delayed Branch

• Where to get instructions to fill branch delay slot?
– Before branch instruction
– From the target address: only valuable when branch taken
– From fall through: only valuable when branch not taken
– Cancelling branches allows more slots to be filled

• Compiler effectiveness for single branch delay slot:
– Fills about 60% of branch delay slots
– About 80% of instructions executed in branch delay slots useful in

computation
– About 50% (60% x 80%) of slots usefully filled

CPS 220 34© Alvin R. Lebeck 2001

Evaluating Branch Alternatives

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Stall pipeline 3 1.42 3.5 1.0
Predict taken 1 1.14 4.4 1.26
Predict not taken 1 1.09 4.5 1.29
Delayed branch 0.5 1.07 4.6 1.31

Branches = 14% of insts, 65% of them change PC

Pipeline speedup = Pipeline depth
1 +Branch frequency ? Branch penalty

18

Page 18

CPS 220 35© Alvin R. Lebeck 2001

Compiler “Static” Prediction of
Taken/Untaken Branches

• Improves strategy for placing instructions in delay slot
• Two strategies

– Backward branch predict taken, forward branch not taken
– Profile-based prediction: record branch behavior, predict branch

based on prior run

Always taken
Taken backwards
Not Taken Forwards

0%

10%

20%

30%

40%

50%

60%

70%

80%

al
vi

nn

co
m

pr
es

s

do
du

c

es
pr

es
so gc

c

hy
dr

o2
d

m
dl

js
p2 or

a

sw
m

25
6

to
m

ca
tv

M
is

pr
ed

ic
ti

on
 R

at
e

0%

2%

4%

6%

8%

10%

12%

14%

16%

al
vi

nn

co
m

pr
es

s

do
du

c

es
pr

es
so gc

c

hy
dr

o2
d

m
dl

js
p2 or
a

sw
m

25
6

to
m

ca
tv

M
is

pr
ed

ic
tio

n
R

at
e

CPS 220 36© Alvin R. Lebeck 2001

Evaluating Static Branch Prediction

• Misprediction
ignores frequency
of branch

• “Instructions
between
mispredicted
branches” is a
better metric

1

10

100

1000

10000

100000

al
vi

nn

co
m

pr
es

s

do
du

c

es
pr

es
so gc

c

hy
dr

o2
d

m
dl

js
p2 or
a

sw
m

25
6

to
m

ca
tv

In
st

ru
ct

io
ns

 p
er

 m
is

pr
ed

ic
te

d
br

an
ch

Profile-based Direction-based

19

Page 19

CPS 220 37© Alvin R. Lebeck 2001

Pipelining Complications

• Interrupts (Exceptions)
– 5 instructions executing in 5 stage pipeline
– How to stop the pipeline?
– How to restart the pipeline?
– Who caused the interrupt?

Stage Problem interrupts occurring
IF Page fault on instruction fetch; misaligned memory

access; memory-protection violation
ID Undefined or illegal opcode
EX Arithmetic interrupt
MEM Page fault on data fetch; misaligned memory

access; memory-protection violation

CPS 220 38© Alvin R. Lebeck 2001

Pipelining Complications

• Simultaneous exceptions in > 1 pipeline stage
– Load with data page fault in MEM stage
– Add with instruction page fault in IF stage

• Solution #1
– Interrupt status vector per instruction
– Defer check til last stage, kill state update if exception

• Solution #2
– Interrupt ASAP
– Restart everything that is incomplete

• Exception in branch delay slot,
– SW needs two PCs

• Another advantage for state update late in
pipeline!

20

Page 20

CPS 220 39© Alvin R. Lebeck 2001

Next Time

• Next time
– More pipeline complications
– Longer pipelines (R4000) => Better branch prediction, more

instruction parallelism?

Todo
• Read Chapter 3 and 4
• Homework #1 due
• Project selection by September 30

CPS 220 40© Alvin R. Lebeck 2001

Pipeline Complications

• Complex Addressing Modes and Instructions
• Address modes: Autoincrement causes register

change during instruction execution
– Interrupts? Need to restore register state
– Adds WAR and WAW hazards since writes no longer last stage

• Memory-Memory Move Instructions
– Must be able to handle multiple page faults
– Long-lived instructions: partial state save on interrupt

• Condition Codes

21

Page 21

41© Alvin R. Lebeck 2001

IF ID/RF

EX MEM

WB

M1 M2 M3 M4 M5 M6 M7

A1 A2 A3 A4

FP/INT Divide Unit
Not Pipelined

25 Clocks

Pipeline Complications: Floating Point

CPS 220 42© Alvin R. Lebeck 2001

Pipelining Complications

• Floating Point: long execution time
• Also, may pipeline FP execution unit so they can

initiate new instructions without waiting full latency

FP Instruction Latency Initiation Rate (MIPS R4000)
Add, Subtract 4 3
Multiply 8 4
Divide 36 35 (interrupts,
Square root 112 111 WAW, WAR)
Negate 2 1
Absolute value 2 1
FP compare 3 2

Cycles before
use result

Cycles before issue
instr of same type

22

Page 22

CPS 220 43© Alvin R. Lebeck 2001

Summary of Pipelining Basics

• Hazards limit performance
– Structural: need more HW resources
– Data: need forwarding, compiler scheduling
– Control: early evaluation & PC, delayed branch, prediction

• Increasing length of pipe increases impact of
hazards; pipelining helps instruction bandwidth, not
latency

• Compilers reduce cost of data and control hazards
– Load delay slots
– Branch delay slots
– Branch prediction

• Interrupts, Instruction Set, FP makes pipelining
harder

• Handling context switches.

CPS 220 44© Alvin R. Lebeck 2001

Case Study: MIPS R4000
(100 MHz to 200 MHz)

• 8 Stage Pipeline:
– IF–first half of fetching of instruction; PC selection happens here as

well as initiation of instruction cache access.
– IS–second half of access to instruction cache.
– RF–instruction decode and register fetch, hazard checking and also

instruction cache hit detection.
– EX–execution, which includes effective address calculation, ALU

operation, and branch target computation and condition evaluation.
– DF–data fetch, first half of access to data cache.
– DS–second half of access to data cache.
– TC–tag check, determine whether the data cache access hit.
– WB–write back for loads and register-register operations.

• 8 Stages: What is impact on Load delay? Branch
delay? Why?

23

Page 23

CPS 220 45© Alvin R. Lebeck 2001

Case Study: MIPS R4000

IF IS
IF

RF
IS
IF

EX
RF
IS
IF

DF
EX
RF
IS
IF

DS
DF
EX
RF
IS
IF

TC
DS
DF
EX
RF
IS
IF

WB
TC
DS
DF
EX
RF
IS
IF

TWO Cycle
Load Latency

IF IS
IF

RF
IS
IF

EX
RF
IS
IF

DF
EX
RF
IS
IF

DS
DF
EX
RF
IS
IF

TC
DS
DF
EX
RF
IS
IF

WB
TC
DS
DF
EX
RF
IS
IF

THREE Cycle
Branch Latency
(conditions evaluated
during EX phase)
Delay slot plus two stalls
Branch likely cancels delay slot if not taken

CPS 220 46© Alvin R. Lebeck 2001

MIPS R4000 Floating Point

• FP Adder, FP Multiplier, FP Divider
• Last step of FP Multiplier/Divider uses FP Adder HW
• 8 kinds of stages in FP units:

– Stage Functional unit Description
– A FP adder Mantissa ADD stage
– D FP divider Divide pipeline stage
– E FP multiplier Exception test stage
– M FP multiplier First stage of multiplier
– N FP multiplier Second stage of multiplier
– R FP adder Rounding stage
– S FP adder Operand shift stage
– U Unpack FP numbers

24

Page 24

CPS 220 47© Alvin R. Lebeck 2001

MIPS FP Pipe Stages

FP Instr 1 2 3 4 5 6 7 8 …
Add, Subtract U S+A A+R R+S
Multiply U E+M M M M N N+A R
Divide U A R D28 … D+A D+R, D+R, D+A, D+R, A, R
Square root U E (A+R)108 … A R
Negate U S
Absolute value U S
FP compare U A R
Stages:

M First stage of multiplier
N Second stage of multiplier
R Rounding stage
S Operand shift stage
U Unpack FP numbers

A Mantissa ADD stage
D Divide pipeline stage
E Exception test stage

CPS 220 48© Alvin R. Lebeck 2001

R4000 Performance
• Not ideal CPI of 1:

– Load stalls (1 or 2 clock cycles)
– Branch stalls (2 cycles + unfilled slots)
– FP result stalls: RAW data hazard (latency)
– FP structural stalls: Not enough FP hardware (parallelism)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

eq
nt

ot
t

es
pr

es
so gc

c li

do
du

c

na
sa

7 or
a

sp
ic

e2
g6

su
2c

or

to
m

ca
tv

Base Load stalls Branch stalls FP result stalls FP structural
stalls

25

Page 25

CPS 220 49© Alvin R. Lebeck 2001

Next Time

• Homework #1 is Due
• Instruction Level Parallelism (ILP)
• Read Chapter 4

