Lecture 4: Pipeline Complications:
Data and Control Hazards

Professor Alvin R. Lebeck
Computer Science 220
Fall 2001

/ Administrative

» Homework #1 Due Tuesday, September 11
» Start Reading Chapter 4
* Projects

o

© Alvin R. Lebeck 2001 CPS 220

Page 1

/ Review: A Single Cycle Processor \

ALUop
ALU

- > Al
6/ Main _Emm_)m Uscc |nﬂr<5:_cf§§u6r7L) contrd 8

Control

Instr<31:26> * Branch : Instruction<31:.0>
i JAY
Jum Instructlo_n N 5 =<
I Rd I Rt etch Unit N [N = =
RegDst Clk —o| al o a |9
t

R Rs Rd | 16
Reg\Wr 5 q/RS5|/Rt S mm
| = Zero | Memwr MemtoReg
busw w Ra Rb
> 3232-bit 32\ >{0
32 Registers »{0 32 =
c 3P K
P > WrEn Adr r
TR (R W
nstr<15:0> Memory
ALUSrc
© Alvin R. Lebeck 2001 CPS 220 3

/ Review: Pipelining Lessons \

Pipelining doesn’t help

6 PM 7 8 o] latency of single task, it
| helps throughput of
[Time entire workload

' ‘ ‘ | « Pipeline rate limited by
30 40 40 % % Iﬁl slowest pipeline stage
= e e Multiple tasks operating
o7 simultaneously
* Potential speedup =
Number pipe stages

7 * Unbalanced lengths of
= pipe stages reduces

/ﬂmo.-xo ~un o —

[
speedup
7 + Time to “fill” pipeline and
=—7 o time to “drain” it reduces
ool & ;[speedup
© Alvin R. Lebeck 2001 CPS 220 4

Page 2

/ Review: The Five Stages of a Load \

| Cyclell Cycle2 | Cycles| Cycle4 |Cyc|e5 |

S S G

Load | Ifetch |RegiDec] Exec | Mem | wrB |

Ifetch: Instruction Fetch
— Fetch the instruction from the Instruction Memory

Reg/Dec: Registers Fetch and Instruction Decode
Exec: Calculate the memory address
Mem: Read the data from the Data Memory

kWrB: Write the data back to the register file /

© Alvin R. Lebeck 2001 5

/ Review: Pipelining the Load Instruction \

I Cyclell Cycle2 | Cycle3| Cycle4 ICycIeS |Cyc|e6 |Cyc|e7 |
Clok ML LI Ll LI LI Ll L]

1st IW| Ifetch |Reg/Dec| Exec | Mem | WrB | |

2nd Iw| Ifetch |Reg/Dec] Exec | Mem | wrB |

3rdIw/| Ifetch |Reg/Dec] Exec | Mem | wrB |
« The five independent pipeline stages are:
— Read Next Instruction: The Ifetch stage.
— Decode Instruction and fetch register values: The Reg/Dec stage
— Execute the operation: The Exec stage.
— Access Data-Memory: The Mem stage.
— Write Data to Destination Register: The WrB stage

* One instruction enters the pipeline every cycle
— Oneinstruction comes out of the pipeline (completed) every cycle
— The “ Effective” Cycles per Instruction (CPI)is 1; ~1/5 cycle time

© Alvin R. Lebeck 2001 6

Page 3

/Review: Delay R-type’s Write by One Cycle \

* Delay R-type’s register write by one cycle:
— Now R-type instructions also use Reg File’'s write port at Stage 5

— Mem stage is a NO-OP stage: nothing is being done. Effective CPI?
1 2 3 4 5

R—typel Ifetch |Reg/Dec| Execl Meml Wr |

| Cyclel| Cycle2 | Cycle3| Cycle4 |Cyc|e5 |Cyclee |Cyc|e7 |Cycles |Cyc|e9 |

Cock 1L I LI LT LT LI LI LI I |

R—typel Ifetch |Reg/Dec| Exec I Mem | WrB | ‘

R—typel Ifetch |Reg/Dec| Exec | Mem | WrB |

Loadl Ifetch IReg/Decl Exec | Mem | WrB |

R—typel Ifetch |Reg/Dec| Exec | Mem | WrB |

K R—typel Ifetch |Reg/Dec| Exec | Mem | WrBy

© Alvin R. Lebeck 2001 7

/ Review: A Pipelined Datapath \

I I

Clk
fe—— le—
Ifetch Reg/Dec Exec Mem WrB
RegWr ExtOp ALUOp Branch
i
= LO g RS PC+4 —é—J &
o p > > »| PC+4 (—p
o t Imm16 > »| Imm1 = =
=] |Rs —»lg » | busA X | _Zer¢ | Data
A | > Ra % _ bu < Mem 5
— o —{[T » | busB g R P
" 2| =P Ro o2 EX [> RADI—p | 1
S| &% |rFile] |3 unit| || P wa Py
= Al lRwnl (@ g7 8
R T <
i R > | 1J » B > ._—l

& RegDsl ALUSrc MemWr MemtoReg /

© Alvin R. Lebeck 2001 8

Page 4

/ Its Not That Easy for Computers \

* What could go wrong?

* Limits to pipelining: Hazards prevent next instruction
from executing during its designated clock cycle

— Structural hazards: HW cannot support this combination of
instructions

— Data hazards: Instruction depends on result of prior instruction still
in the pipeline
— Control hazards: Pipelining of branches & other instructions

o /

© Alvin R. Lebeck 2001 CPS 220 9

/ Speed Up Equation for Pipelining \

Speedup from pipelining = Ave Instr Tine unpipelined
Ave Instr Tine pipelined
CPl ynpiperined X Clock Cycle
CPl 5iperined X Clock Cycle
CPI
CPI

unpi pel i ned

pi pel i ned
C ock Cycle
Cl ock Cycle

unpipelinedX unpi pel i ned

pi pel i ned pi pel i ned

| deal CPI = CPI / Pi peline depth

unpi pel i ned

Speedup = Ideal CPlI x Pipeline deptr;(Cl ock Cycle
CPI C ock Cycle

unpi pel i ned

pi pel i ned

o /

© Alvin R. Lebeck 2001 CPS 220 10

pi pel i ned

Page 5

/ Speed Up Equation for Pipelining \

CPl yipetines = ldeal CPI + Pipeline stall clock cycles per instr

Speedup = Ideal CPlI x Pipeline depth X Cl ock Cycle
Ideal CPlI + Pipeline stall CPI Cl ock Cycle

unpi pel i ned

pi pel i ned

Speedup = Pi peli ne depth x Clock Cycle
1 + Pipeline stall CPI Clock Cycle

unpi pel i ned

pi pel i ned

- /

© Alvin R. Lebeck 2001 CPS 220 1

/ Example: Dual-port vs. Single-port \

* Machine A: Dual ported memory

 Machine B: Single ported memory, but its pipelined
implementation has a 1.05 times faster clock rate

* |deal CPI =1 for both

* Loads are 40% of instructions executed
SpeedUp, = Pipeline Depth/(1 + 0) x (clock
= Pipeline Depth

SpeedUpg = Pipeline Depth/(1 + 0.4 x 1)
X (¢l ock i pe/ (€l OCK i pe /1. 05)

(Pipeline Depth/1.4) x 1.05
0.75 x Pipeline Depth
SpeedUp, / SpeedUpg = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

Q/Iachine A is 1.33 times faster /

© Alvin R. Lebeck 2001 CPS 220 12

/ cl ock

unpi pe pipe)

Page 6

/ Three Generic Data Hazards \

* Instr, followed by Instr;,

* Read After Write (RAW)
Instr; tries to read operand before Instr,writes it

o /

© Alvin R. Lebeck 2001 CPS 220 13

/ Three Generic Data Hazards \

* Instr, followed by Instr,

» Write After Read (WAR)
Instr, tries to write operand before Instr, reads it

* Can’t happen in DLX 5 stage pipeline because:
— All instructions take 5 stages,
— Reads are always in stage 2, and
— Writes are always in stage 5

o /

© Alvin R. Lebeck 2001 CPS 220 14

Page 7

/ Three Generic Data Hazards \

Instr, followed by Instr,

Write After Write (WAW)
Instr; tries to write operand before Instr,writes it
— Leaves wrong result (Instr, not Instr,)

Can’t happen in DLX 5 stage pipeline because:
— All instructions take 5 stages, and
— Writes are always in stage 5

Will see WAR and WAW in later more complicated
pipes

o /

© Alvin R. Lebeck 2001 CPS 220 15

/ Data Hazards \

* We must deal with instruction dependencies.
* Example:
sub $2, $1, $3
and $12, $2, $5 # $12 depends on the result in $2
or $13, $6, $2 # but $2 is updated 3 clock
add $14, $2, $2 # cycles later.
sw $15, 100($2) # We have a problenl! Data Hazard

| Cyclel| Cycle2 | Cycle3| Cycle4 | Cycle5 |Cyclee |Cyc|e7 |Cycles |
Clock [LI LI L LI LI L1 LT LJ

0: sub [ifetch |Rea/Ded Exec | Mem | wrB | |
‘“— |
4: and [_fetch |Req/D Exec em || WrB

8: or [fetch |R@/DQ ’;xecl Mem | WrB |

12: add [_ifetch |Re0/Ded Exec | Mem | WrB

& 16: sw [fetch |Rea/D Exec Mem WI’B/

© Alvin R. Lebeck 2001 16

Page 8

@W Data Hazard Solution: Register Forwardir@

ID/EX EX/MEM MEM/WB
] Forward B]]
=N
Registers

Data
Memory T

—»>

Forward A
g
Forwarding

o /

© Alvin R. Lebeck 2001

17

/ RAW Data Hazard for Load \
| Cyclell Cycle2 | Cycle3| Cycle4 |Cyc|e5 Cycle6 |Cycle7 |Cycles |
coed L L1 L LI L

10: Load|_Lfetch |Rea/Ded Exec | Mem.\l Wr .\I |
Plus1 |_Ifetch |Rea/Ded Exec | Memll

\
Plus2 |_Ifetch |Rea/Ded " Exec |l

* Load is fetched during Cycle 1:

— The data is NOT written into the Reg File until the end of Cycle 5
— We cannot read this value from the Reg File until Cycle 6
— 3-instruction delay before the load takes effect
* This is a Data Hazard:

& — Register forwarding reduces the load delay to ONE instruction /
d!

— It is not possible to entirely eliminate the load Data Hazar
© Alvin R. Lebeck 2001

18

Page 9

-~

Load Data Forwarding

~

Registers

o

>

ID/EX

Forward B

Forward A

EX/MEM

Forwarding

Un

it

MEM/WB
Data
Memory T
P>

/

© Alvin R. Lebeck 2001

19

/ Dealing with the Load Data Hazard

~

» There are two ways to deal with the load data hazard:

— Insert a NOOP bubble into the data path.
— Use Delayed load semantic (see a next slide)

Insert NOOP Here

Stallo Stalll Stall2 How?
RegWr ExtOp ALUOp Bray ’
.—'l— 4
L _L:’r 1
- PC+4 [P
2 | mm16 >|immi6 |m =z
Rs > |
A L busA 5 Data g
T > busB g _ Me é
IC —» Rb EX |—P » RMDo—p(=
S Rt |RFile unit| [T FPIwaA o
- > 8 »| Di 1]
Rt Q >0
I " 0 »|D >|a
R | 1J > B8 > _.—l |
& RegDsl ALUSIc MemWr I\/IemtoReé/
© Alvin R. Lebeck 2001 20
Page 10

10

-~

Delayed Load

~

BAD
| d

sub
add

K
I d
add

ri,
r3,
r2,

ri,
r2,
r3,

8(r2)
ri, r3
rz2, 4
8(r2)
rz2, 4
ri, r3

e Load instructions are defined such that immediate
successor instruction will not read result of load.

/

© Alvin R. Lebeck 2001

21

/Software Scheduling to Avoid Load Hazards\

Try producing fast code for

a=b+c;
d=e-f;
assuming a, b, c, d ,e, and f in memory.
Slow code: Fast code:
LW Rb,b LW Rb,b
LW Rc,c LW Rc,c
ADD Ra,Rb,Rc LW Re.,e
SW aRa ADD Ra,Rb,Rc
LW Ree LW REf
- Rif :\L/JVB :: ; Rf
Re,
SUB Rd,Re,Rf sw dAd
& SW d,Rd
© Alvin R. Lebeck 2001 CPS 220
Page 11

22

11

/ Compiler Avoiding Load Stalls \
B scheduled B unscheduled
gcc
spice
65%
tex B 5% | |
0% 20% 40% 60% 80%
K % loads stalling pipeline /
© Alvin R. Lebeck 2001 CPS 220 23
/ Review: Data Hazards \
* RAW
— only one that can occur in DLX pipeline
* WAR
* WAW

Data Forwarding (Register Bypassing)

— send data from one stage to another bypassing the register file

Still have load use delay

o

/

© Alvin R. Lebeck 2001 CPS 220

Page 12

24

12

/ Pipelining Summary \

» Just overlap tasks, and easy if tasks are independent
» Speed Up ~ Pipeline Depth; if ideal CPlis 1, then:

Pipeline Depth Clock Cycle Unpipelined
Speedup = X

1 + Pipeline stall CPI Clock Cycle Pipelined

Hazards limit performance on computers:
— Structural: need more HW resources
— Data: need forwarding, compiler scheduling
— Control: discuss today

Branches and Other Difficulties
What makes branches difficult?

o /

© Alvin R. Lebeck 2001

CPS 220 25

ﬁontrol Hazard on Branches: Three Stage Stah

time
ccl cc2 cc3

beq r1, foo

add r3, r4, r6 D_ILDI:I:
and r3, r2, r4 E’—ILD

subr2,r3,r5

add r3,r2,r5

o

© Alvin R. Lebeck 2001

CPS 220

Page 13

13

Control Hazard

| cydea|cydes | cyces|cyde |Eyces |cydes | cydeid cyde1i]

ck [L1 L L L I
12: Beq | Ifetch IReg/Dec\I Exec I Mem || |Wr | ‘
(tar get is 1000) \

16: R_typpl Ifetch [|Reg/Dec] Exec \[| [Mem | wr |
' \

20: R-type |‘Ifetch IReg/Dec Exec I Mem I Wr |

24: R—typel Ifetch eg/DecI Exec I Mem I Wr |

1000: Target of Br |'lIfetch IReg/DecI Exec I Meml Wr

» Although Beq is fetched during Cycle 4:
— Target address is NOT written into the PC until the end of Cycle 7
— Branch’s target is NOT fetched until Cycle 8
— 3-instruction delay before the branch take effect

e This is called a Control Hazard:

/ Branch Stall Impact

~

How can you reduce this delay?

Two part solution:
— Determine branch taken or not sooner, AND
— Compute taken branch address earlier

DLX branch tests if register =0 or =0

DLX Solution:
— Move Zero test to ID/RF stage
— Adder to calculate new PC in ID/RF stage
— 1 clock cycle penalty for branch versus 3

o

If CPl =1, 30% branch, Stall 3 cycles => new CPI = 1.9!

© Alvin R. Lebeck 2001 CPS 220

Page 14

28

14

/ Branch Delays

Control &
Hazards
4
—p |
Rs
> :
PC _»Reg|sters
i Rt
Memory Bus B
—p <<2
Imm —
A.Q—>
Exanpl e: Rt
sub $10, $4, $8 <
beg $10, $3, %o Rd
add $12, $2, $5 - _

g lw $4, 16($12) /

29

© Alvin R. Lebeck 2001

/ Branch Hazard \

» Can we eliminate the effect of this one cycle branch
delay?

o /

30

© Alvin R. Lebeck 2001

Page 15
15

/ Four Branch Hazard Alternatives

#1: Stall until branch direction is clear
#2: Predict Branch Not Taken

— Execute successor instructions in sequence

— “Squash” instructions in pipeline if branch actually taken
— Advantage of late pipeline state update

— 47% DLX branches not taken on average

— PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken

— 53% DLX branches taken on average
— But haven't calculated branch target address in DLX

» DLX still incurs 1 cycle branch penalty

» Other machines: branch target known before outcome
© Alvin R. Lebeck 2001 CPS 220

/ Four Branch Hazard Alternatives

31

#4: Delayed Branch

— Define branch to take place AFTER a following instruction

branch instruction

sequenti al successor,
sequenti al successor,

sequenti al successor
branch target if taken

Branch delay of length n

— 1 slot delay allows proper decision and branch target
address in 5 stage pipeline

— DLX uses this

o

© Alvin R. Lebeck 2001 CPS 220

Page 16

32

16

/ Delayed Branch \

* Where to get instructions to fill branch delay slot?
— Before branch instruction
— From the target address: only valuable when branch taken
— From fall through: only valuable when branch not taken
— Cancelling branches allows more slots to be filled

» Compiler effectiveness for single branch delay slot:
— Fills about 60% of branch delay slots

— About 80% of instructions executed in branch delay slots useful in
computation

— About 50% (60% x 80%) of slots usefully filled

- /

© Alvin R. Lebeck 2001

CPS 220 33

/ Evaluating Branch Alternatives \

. _ Pipeline depth
Pipeline speedup 1 +Branch frequency ? Branch penalty

Scheduling Branch CPl speedupv. speedupv.

scheme penalty unpipelined stall
Stall pipeline 3 142 3.5 1.0
Predict taken 1 114 4.4 1.26
Predict not taken 1 1.09 4.5 1.29
Delayed branch 0.5 1.07 4.6 1.31

Branches = 14% of insts, 65% of them change PC

© Alvin R. Lebeck 2001 CPS 220 34

Page 17

17

/ Compiler “ Static” Prediction of \
Taken/Untaken Branches

* Improves strategy for placing instructions in delay slot

* Two strategies
— Backward branch predict taken, forward branch not taken

— Profile-based prediction: record branch behavior, predict branch
based on prior run

16% T
80%
14% T
70% +
12% 1

o 60% + g
§5o%f— ?::10%77
< S gl
g % -
8 30% + F ™7
gzo%—— = ey
10% 1 2% 7
0% - 0%
© 3 8 T % £ 8
PriptiEtep s piptiECQ
ey 2 5 & 2 8 @
° Alwavs taken Taken backwards
y Not Taken Forwards
© Alvin R. Lebeck 2001 CPS 220 35

/ Evaluating Static Branch Prediction \

* Misprediction
ignores frequency
of branch

e “Instructions
between
mispredicted
branches” is a
better metric

100000 T

10000 +

1000 T

100 +

10

Instructions per mispredicted branch

gcc

alvinn

g
K [m Profile-based B Direction-based | /

doduc
hydro2d
mdljsp2
ora
swm256
tomcatv

compress

© Alvin R. Lebeck 2001 CPS 220 36

Page 18
18

/ Pipelining Complications \

* Interrupts (Exceptions)
— 5instructions executing in 5 stage pipeline
— How to stop the pipeline?
— How to restart the pipeline?
— Who caused the interrupt?

Stage Problem interrupts occurring

IF Page fault on instruction fetch; misaligned memory
access; memory-protection violation

ID Undefined or illegal opcode

EX Arithmetic interrupt

MEM Page fault on data fetch; misaligned memory

access; memory-protection violation

o /

© Alvin R. Lebeck 2001 CPS 220 37

/ Pipelining Complications \

« Simultaneous exceptions in > 1 pipeline stage
— Load with data page fault in MEM stage
— Add with instruction page fault in IF stage
Solution #1
— Interrupt status vector per instruction
— Defer check til last stage, kill state update if exception
Solution #2
— Interrupt ASAP
— Restart everything that is incomplete
Exception in branch delay slot,
— SW needs two PCs
Another advantage for state update late in
pipeline!

o /

© Alvin R. Lebeck 2001 CPS 220 38

Page 19

/ Next Time

* Next time
— More pipeline complications

— Longer pipelines (R4000) => Better branch prediction, more
instruction parallelism?

Todo

* Read Chapter 3 and 4

* Homework #1 due

* Project selection by September 30

o

© Alvin R. Lebeck 2001 CPS 220

39

/ Pipeline Complications

~

Complex Addressing Modes and Instructions
Address modes: Autoincrement causes register
change during instruction execution

— Interrupts? Need to restore register state

— Adds WAR and WAW hazards since writes no longer last stage

Memory-Memory Move Instructions
— Must be able to handle multiple page faults
— Long-lived instructions: partial state save on interrupt

Condition Codes

o

© Alvin R. Lebeck 2001 CPS 220

Page 20

40

20

/ Pipeline Complications: Floating Point \

t EX 9 MEM

\

M7

N

bbb

L FP/INT Divide Unit
Not Pipelined

K NN
<4—— 25Clocks ———»

wB

o —RHEHEE J

© Alvin R. Lebeck 2001

41

/ Pipelining Complications

* Floating Point: long execution time

* Also, may pipeline FP execution unit so they can
initiate new instructions without waiting full latency

FP Instruction Latency Initiation Rate (MIPS R4000)

Add, Subtract 4 3
Multiply 8 4
Divide 36 35 (interrupts,
Square root 112 111 WAW, WAR)
Negate 2 1
Absolute value 2 1
FP compare 3 2
K Cycles before Cycles before issue
use result instr of same type
© Alvin R. Lebeck 2001 CPS 220

Page 21

42

/ Summary of Pipelining Basics \

Hazards limit performance
— Structural: need more HW resources
— Data: need forwarding, compiler scheduling
— Control: early evaluation & PC, delayed branch, prediction

Increasing length of pipe increases impact of

hazards; pipelining helps instruction bandwidth, not
latency

Compilers reduce cost of data and control hazards
— Load delay slots
— Branch delay slots
— Branch prediction

Interrupts, Instruction Set, FP makes pipelining

harder
K-Handling context switches. /
© Alvin R. Lebeck 2001 CPS 220 43
/ Case Study: MIPS R4000 \
(100 MHz ta 200 MHZz)

» 8 Stage Pipeline:

— IF-first half of fetching of instruction; PC selection happens here as
well as initiation of instruction cache access.

— IS—second half of access to instruction cache.

— RF-instruction decode and register fetch, hazard checking and also
instruction cache hit detection.

— EX—execution, which includes effective address calculation, ALU
operation, and branch target computation and condition evaluation.

— DF—data fetch, first half of access to data cache.

— DS-second half of access to data cache.

— TC—tag check, determine whether the data cache access hit.
— WB-write back for loads and register-register operations.

» 8 Stages: What is impact on Load delay? Branch
delay? Why?

/

© Alvin R. Lebeck 2001 CPS 220 44

Page 22
22

~

Case Study: MIPS R4000

TWO Cycle IF IS RF EX DF TC WB
Load Latency IF IS RF EX DF\ DS TC
IF IS RF EX YDF DS
IF IS RF DF
IF IS RF EX
IF IS RF
IF IS
IF
THREE Cycle IF IS RF DF DS TC WB
Branch Latency IF IS RF\ EX DF DS TC
(conditions evaluated IF :§ IRSF Eﬁ E; Bg
during EX phase) s RE Ex
Delay slot plus two stalls IF IS RE
@nch likely cancels delay slot if not taken IE IS
IE

/

© Alvin R. Lebeck 2001

CPS 220

45

-

MIPS R4000 Floating Point

~

— Stage
- A
-D
-E
-M
- N
-R
-S
-Uu

o

* FP Adder, FP Multiplier, FP Divider
» Last step of FP Multiplier/Divider uses FP Adder HW
» 8 kinds of stages in FP units:

Functional unit Description
Mantissa ADD stage
Divide pipeline stage
Exception test stage

First stage of multiplier
Second stage of multiplier

FP adder

FP divider
FP multiplier
FP multiplier
FP multiplier
FP adder

FP adder

Rounding stage

Operand shift stage
Unpack FP numbers

© Alvin R. Lebeck 2001

CPS 220

Page 23

46

23

/ MIPS FP Pipe Stages \

FP Instr 1 2 3 4 5 6 7 8
Add, Subtract U S+A A+R R+S
Multiply Uu EtM M M M N N+A R
Divide u A R D?» ... D+A D+R,D+R,D+A,D+R,A, R
Square root U E (A+R)08 A R
Negate U S
Absolutevalue U S
FP compare u A R
Stages:
M First stage of multiplier
N Second stage of multiplier A Mantissa ADD stage
R Rounding stage D Divide pipeline stage
S Operand shift stage E Exception test stage
K u Unpack FP numbers /
© Alvin R. Lebeck 2001 CPS 220 a7

/ R4000 Performance \

* Not ideal CPI of 1:
— Load stalls (1 or 2 clock cycles)
— Branch stalls (2 cycles + unfilled slots)
: RAW data hazard (latency)
— FP structural stalls: Not enough FP hardware (parallelism)

45
4
35
3
25
2
15
1
0.5
0 g
& £
& M Base B Load stalls W Branch sals O FPresut salls B FPstructural /
stalls
© Alvin R. Lebeck 2001 CPS 220 48

Page 24

/ Next Time

* Homework #1 is Due
* Instruction Level Parallelism (ILP)
* Read Chapter 4

o

© Alvin R. Lebeck 2001 CPS 220

Page 25

49

25

