
Compsci 220 / ECE 252 (Lebeck): Pipelining 1

Duke Compsci 220/ ECE 252
Advanced Computer Architecture I

Prof. Alvin R. Lebeck

Pipelining

Slides developed by Amir Roth of University of Pennsylvania with sources
that included University of Wisconsin slides by Mark Hill, Guri Sohi, Jim
Smith, and David Wood.

Slides enhanced by Milo Martin, Mark Hill, Alvin Lebeck, Dan Sorinand
David Wood with sources that included Profs. Asanovic, Falsafi, Hoe,
Lipasti, Shen, Smith, Sohi, Vijaykumar, and Wood

Compsci 220 / ECE 252 (Lebeck): Pipelining 2

This Unit: Pipelining

•  Basic Pipelining
  Single, in-order issue
  Clock rate vs. IPC

•  Data Hazards
  Hardware: stalling and bypassing
  Software: pipeline scheduling

•  Control Hazards
  Branch prediction

•  Precise state

Application

OS

Firmware Compiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

Compsci 220 / ECE 252 (Lebeck): Pipelining 3

Quick Review

•  Basic datapath: fetch, decode, execute
•  Single-cycle control: hardwired

+  Low CPI (1)
–  Long clock period (to accommodate slowest instruction)

•  Multi-cycle control: micro-programmed
+  Short clock period
–  High CPI

•  Can we have both low CPI and short clock period?
  Not if datapath executes only one instruction at a time
  No good way to make a single instruction go faster

insn0.fetch, dec, exec
Single-cycle

Multi-cycle

insn1.fetch, dec, exec

insn0.dec insn0.fetch
insn1.dec insn1.fetch

insn0.exec
insn1.exec

Compsci 220 / ECE 252 (Lebeck): Pipelining 4

Pipelining

•  Important performance technique
  Improves instruction throughput rather instruction latency

•  Begin with multi-cycle design
  When instruction advances from stage 1 to 2
  Allow next instruction to enter stage 1
  Form of parallelism: “insn-stage parallelism”
  Individual instruction takes the same number of stages
+  But instructions enter and leave at a much faster rate

•  Automotive assembly line analogy

insn0.dec insn0.fetch
insn1.dec insn1.fetch Multi-cycle

Pipelined

insn0.exec
insn1.exec

insn0.dec insn0.fetch
insn1.dec insn1.fetch
insn0.exec

insn1.exec

Compsci 220 / ECE 252 (Lebeck): Pipelining 5

5 Stage Pipelined Datapath

•  Temporary values (PC,IR,A,B,O,D) re-latched every stage
  Why? 5 insns may be in pipeline at once, they share a single PC?
  Notice, PC not latched after ALU stage (why not?)

PC I$ Register
File

s1 s2 d D$

+
4

PC

IR

PC

A

B

IR

O

B
IR

O

D

IR

Compsci 220 / ECE 252 (Lebeck): Pipelining 6

Pipeline Terminology

•  Five stage: Fetch, Decode, eXecute, Memory, Writeback
  Nothing magical about the number 5 (Pentium 4 has 22 stages)

•  Latches (pipeline registers) named by stages they separate
  PC, F/D, D/X, X/M, M/W

PC I$ Register
File

s1 s2 d D$

+
4

PC

IR

PC

A

B

IR

O

B
IR

O

D

IR PC
F/D D/X X/M M/W

Compsci 220 / ECE 252 (Lebeck): Pipelining 7

Pipeline Control

•  One single-cycle controller, but pipeline the control signals

PC I$ Register
File

s1 s2 d D$

+
4

PC

IR

PC

A

B

IR

O

B
IR

O

D

IR

CTRL

xC

mC

wC

mC

wC

wC

Compsci 220 / ECE 252 (Lebeck): Pipelining 8

Abstract Pipeline

•  This is an integer pipeline
  Execution stages are X,M,W

•  Usually also one or more floating-point (FP) pipelines
  Separate FP register file
  One “pipeline” per functional unit: E+, E*, E/

  “Pipeline”: functional unit need not be pipelined (e.g, E/)
  Execution stages are E+,E+’,W (no M)

regfile

D$

PC F/D D/X X/M M/W

I$

+
4

Compsci 220 / ECE 252 (Lebeck): Pipelining 9

Floating Point Pipelines

I$

I-regfile

D$

+
4

F-regfile

E/

E
+

E
+’

E* E*’ E*’’

Compsci 220 / ECE 252 (Lebeck): Pipelining 10

Pipeline Diagram

•  Pipeline diagram
  Cycles across, insns down
  Convention: X means ld r4,0(r5) finishes execute stage and writes

into X/M latch at end of cycle 4

•  Reverse stream analogy
  “Downstream”: earlier stages, younger insns
  “Upstream”: later stages, older insns
  Reverse? instruction stream fixed, pipeline flows over it

  Architects see instruction stream as fixed by program/compiler

1 2 3 4 5 6 7 8 9
add r3,r2,r1 F D X M W
ld r4,0(r5) F D X M W
st r6,4(r7) F D X M W

Compsci 220 / ECE 252 (Lebeck): Pipelining 11

Pipeline Performance Calculation
•  Back of the envelope calculation

  Branch: 20%, load: 20%, store: 10%, other: 50%

•  Single-cycle
  Clock period = 50ns, CPI = 1
  Performance = 50ns/insn

•  Pipelined
  Clock period = 12ns
  CPI = 1 (each insn takes 5 cycles, but 1 completes each cycle)
  Performance = 12ns/insn

Compsci 220 / ECE 252 (Lebeck): Pipelining 12

Principles of Pipelining
•  Let: insn execution require N stages, each takes tn time
•  Single-cycle execution

  L1 (1-insn latency) = ∑tn

  T (throughput) = 1/L1

  LM (M-insn latency, where M>>1) = M*L1

•  Now: N-stage pipeline
  L1+P = L1

  T+P = 1/max(tn) ≤ N/L1

  If tn are equal (i.e., max(tn) = L1/N), throughput = N/L1
  LM+P = M*max(tn) ≥ M*L1/N
  S+P (speedup) = [M*L1 / (≥ M*L1/N)] = ≤ N

•  Q: for arbitrarily high speedup, use arbitrarily high N?

Compsci 220 / ECE 252 (Lebeck): Pipelining 13

No, Part I: Pipeline Overhead
•  Let: O be extra delay per pipeline stage

  Latch overhead: pipeline latches take time
  Clock/data skew

•  Now: N-stage pipeline with overhead
  Assume max(tn) = L1/N
  L1+P+O = L1 + N*O

  T+P+O = 1/(L1/N + O) = 1/(1/T + O) ≤ T, ≤ T/O

  LM+P+O = M*L1/N + M*O = LM+P + M*O
  S+P+O = [M*L1 / (M*L1/N + M*O)] = ≤ N = S+P, ≤ L1/O

•  O limits throughput and speedup → useful N

Compsci 220 / ECE 252 (Lebeck): Pipelining 14

No, Part II: Hazards
•  Dependence: relationship that serializes two insns

  Data: two insns use the same value or storage location
  Control: one instruction affects whether another executes at all
  Maybe: two insns may have a dependence

•  Hazard: dependence causes potential incorrect execution
  Possibility of using or corrupting data or execution flow
  Structural: two insns want to use same structure, one must wait
  Often fixed with stalls: insn stays in same stage for multiple cycles

Compsci 220 / ECE 252 (Lebeck): Pipelining 15

No, Part II: Hazards (continued)
•  Let: H be average number of hazard stall cycles per instruction

  L1+P+H = L1+P (no hazards for one instruction)
  T+P+H = [N/(N+H)]*N/L1 = [N/(N+H)] * T+P
  LM+P+H = M* L1/N * [(N+H)/N] = [(N+H)/N] * LM+P

  S+P+H = M*L1 / M*L1/N*[(N+H)/N] = [N/(N+H)]*S+P

•  H also limit throughput, speedup → useful N
  N↑→ H↑ (more insns “in flight” → more dependences become hazards)
  Exact H depends on program, requires detailed simulation/model

Compsci 220 / ECE 252 (Lebeck): Pipelining 16

Clock Rate vs. IPC
•  Deeper pipeline (bigger N)

+  frequency↑
–  IPC↓
  Ultimate metric is IPC * frequency

  But Intel got people to buy frequency, not IPC * frequency

•  Trend has been for deeper pipelines
  Intel example:

  486: 5 stages (50+ gate delays / clock)
  Pentium: 7 stages
  Pentium II/III: 12 stages
  Pentium 4: 22 stages (10 gate delays / clock)
  800 MHz Pentium III was faster than 1 GHz Pentium4
  Intel Core2: 14 stages, less than Pentium 4

Compsci 220 / ECE 252 (Lebeck): Pipelining 17

Optimizing Pipeline Depth
•  Parameterize clock cycle in terms of gate delays

  G gate delays to process (fetch, decode, execute) a single insn
  O gate delays overhead per stage
  X average stall per instruction per stage

  Simplistic: real X function much, much more complex

•  Compute optimal N (pipeline stages) given G,O,X
  IPC = 1 / (1 + X * N)
  f = 1 / (G / N + O)
  Example: G = 80, O = 1, X = 0.16,

N IPC = 1/(1+0.16*N) freq=1/(80/N+1) IPC*freq
5 0.56 0.059 0.033
10 0.38 0.110 0.042
20 0.33 0.166 0.040

Optimizes performance!
What about power?

Compsci 220 / ECE 252 (Lebeck): Pipelining 18

Managing a Pipeline
•  Proper flow requires two pipeline operations

  Mess with latch write-enable and clear signals to achieve

•  Operation I: stall
  Effect: stops some insns in their current stages
  Use: make younger insns wait for older ones to complete
  Implementation: de-assert write-enable

•  Operation II: flush
  Effect: removes insns from current stages
  Use: see later
  Implementation: assert clear signals

•  Both stall and flush must be propagated to younger insns

Compsci 220 / ECE 252 (Lebeck): Pipelining 19

Structural Hazards

•  Structural hazard: resource needed twice in one cycle
  Example: shared I/D$

•  What should we do in this case, and in general?

1 2 3 4 5 6 7 8 9
ld r2,0(r1) F D X M W
add r1,r3,r4 F D X M W
sub r1,r3,r5 F D X M W
st r6,0(r1) F D X M W

Compsci 220 / ECE 252 (Lebeck): Pipelining 20

Fixing Structural Hazards

•  Can fix structural hazards by stalling
  s* = structural stall
  Q: which one to stall: ld or and?

•  Always safe to stall younger instruction (here and)
•  Fetch stall logic: (X/M.op == ld || X/M.op == st)

•  But not always the best thing to do performance wise (?)
+  Low cost, simple
–  Decreases IPC
  Upshot: better to avoid by design than to fix

1 2 3 4 5 6 7 8 9
ld r2,0(r1) F D X M W
add r1,r3,r4 F D X M W
sub r1,r3,r5 F D X M W
and r6,r1,r2 s* F D X M W

Compsci 220 / ECE 252 (Lebeck): Pipelining 21

Avoiding Structural Hazards (PRS)
•  Pipeline the contended resource

+  No IPC degradation, low area, power overheads
–  Sometimes tricky to implement (e.g., for RAMs)
  For multi-cycle resources (e.g., multiplier)

•  Replicate the contended resource
+  No IPC degradation
–  Increased area, power, latency (interconnect delay?)
  For cheap, divisible, or highly contended resources (e.g, I$/D$)

•  Schedule pipeline to reduce structural hazards (RISC)
  Design ISA so insn uses a resource at most once

  Eliminate same insn hazards
  Always in same pipe stage (hazards between two of same insn)

  Reason why integer operations forced to go through M stage
  And always for one cycle

Compsci 220 / ECE 252 (Lebeck): Pipelining 22

Data Hazards

•  Real insn sequences pass values via registers/memory
  Three kinds of data dependences (where’s the fourth?)

add r2,r3r1
sub r1,r4r2
or r6,r3r1
Read-after-write (RAW)

True-dependence

add r2,r3r1
sub r5,r4r2
or r6,r3r1
Write-after-read (WAR)

Anti-dependence

add r2,r3r1
sub r1,r4r2
or r6,r3r1
Write-after-write (WAW)

Output-dependence

•  Dependence is property of the program and ISA

•  Data hazards: function of data dependences and pipeline
•  Potential for executing dependent insns in wrong order
•  Require both insns to be in pipeline (“in flight”) simultaneously

Compsci 220 / ECE 252 (Lebeck): Pipelining 23

Dependences and Loops
•  Data dependences in loops

  Intra-loop: within same iteration
  Inter-loop: across iterations
  Example: DAXPY (Double precision A X Plus Y)

for (i=0;i<100;i++)
 Z[i]=A*X[i]+Y[i];

0: ldf f2,X(r1)
1: mulf f2,f0,f4
2: ldf f6,Y(r1)
3: addf f4,f6,f8
4: stf f8,Z(r1)
5: addi r1,8,r1
6: cmplti r1,800,r2
7: beq r2,Loop

•  RAW intra: 0→1(f2), 1→3(f4), 2→3
(f6), 3→4(f8), 5→6(r1), 6→7(r2)

•  RAW inter: 5→0(r1), 5→2(r1), 5→4
(r1), 5→5(r1)

•  WAR intra: 0→5(r1), 2→5(r1), 4→5(r1)
•  WAR inter: 1→0(f2), 3→1(f4), 3→2

(f6), 4→3(f8), 6→5(r1), 7→6(r2)
•  WAW intra: none
•  WAW inter: 0→0(f2), 1→1(f4), 2→2

(f6), 3→3(f8), 6→6(r2)

Compsci 220 / ECE 252 (Lebeck): Pipelining 24

RAW
•  Read-after-write (RAW)

add r2,r3r1
sub r1,r4r2
or r6,r3r1

  Problem: swap would mean sub uses wrong value for r1
  True: value flows through this dependence

  Using different output register for add doesn’t help

Compsci 220 / ECE 252 (Lebeck): Pipelining 25

RAW: Detect and Stall

•  Stall logic: detect and stall reader in D
(F/D.rs1 & (F/D.rs1==D/X.rd | F/D.rs1==X/M.rd | F/D.rs1==M/W.rd)) |
(F/D.rs2 & (F/D.rs2==D/X.rd | F/D.rs2==X/M.rd | F/D.rs2==M/W.rd))
  Re-evaluated every cycle until no longer true
+  Low cost, simple
–  IPC degradation, dependences are the common case

regfile

D$

PC F/D D/X X/M M/W

I$

+
4

Compsci 220 / ECE 252 (Lebeck): Pipelining 26

Two Stall Timings (without bypassing)
•  Depend on how D and W stages share regfile

  Each gets regfile for half a cycle
–  1st half D reads, 2nd half W writes 3 cycle stall
  d* = data stall, p* = propagated stall

+  1st half W writes, 2nd half D reads 2 cycle stall
•  How does the stall logic change here?

1 2 3 4 5 6 7 8 9 10
add r2,r3r1 F D X M W
sub r1,r4r2 F d* d* d* D X M W
add r5,r6r7 p* p* p* F D X M W

1 2 3 4 5 6 7 8 9 10
add r2,r3r1 F D X M W
sub r1,r4r2 F d* d* D X M W
add r5,r6r7 p* p* F D X M W

Compsci 220 / ECE 252 (Lebeck): Pipelining 27

Reducing RAW Stalls with Bypassing

•  Why wait until W stage? Data available after X or M stage
  Bypass (aka forward) data directly to input of X or M

  MX: from beginning of M (X output) to input of X
  WX: from beginning of W (M output) to input of X
  WM: from beginning of W (M output) to data input of M
  Two each of MX, WX (figure shows 1) + WM = full bypassing

+  Reduces stalls in a big way
–  Additional wires and muxes may increase clock cycle

regfile

D$

D/X X/M M/W

Compsci 220 / ECE 252 (Lebeck): Pipelining 28

Bypass Logic

•  Bypass logic: similar to but separate from stall logic
  Stall logic controls latches, bypass logic controls mux inputs
  Complement one another: can’t bypass → must stall
  ALU input mux bypass logic

  (D/X.rs2 & X/M.rd==D/X.rs2) → 2 // check first
  (D/X.rs2 & M/W.rd==D/X.rs2) → 1 // check second
  (D/X.rs2) → 0 // check last

regfile

D$

D/X X/M M/W

Compsci 220 / ECE 252 (Lebeck): Pipelining 29

Pipeline Diagrams with Bypassing
•  If bypass exists, “from”/“to” stages execute in same cycle

  Example: full bypassing, use MX bypass

1 2 3 4 5 6 7 8 9 10
add r2,r3r1 F D X M W
sub r1,r4r2 F D X M W

•  Example: full bypassing, use WX bypass
1 2 3 4 5 6 7 8 9 10

add r2,r3r1 F D X M W
ld [r7]r5 F D X M W
sub r1,r4r2 F D X M W

1 2 3 4 5 6 7 8 9 10
add r2,r3r1 F D X M W
? F D X M W

•  Example: WM bypass

•  Can you think of a code example that uses the WM bypass?

Compsci 220 / ECE 252 (Lebeck): Pipelining 30

Load-Use Stalls
•  Even with full bypassing, stall logic is unavoidable

  Load-use stall
  Load value not ready at beginning of M → can’t use MX bypass
  Use WX bypass

1 2 3 4 5 6 7 8 9 10
ld [r3+4]r1 F D X M W
sub r1,r4r2 F D d* X M W

•  Aside: with WX bypassing, stall logic can be in D or X
1 2 3 4 5 6 7 8 9 10

ld [r3+4]r1 F D X M W
sub r1,r4r2 F d* D X M W

•  Aside II: how does stall/bypass logic handle cache misses?

Compsci 220 / ECE 252 (Lebeck): Pipelining 31

Compiler Scheduling
•  Compiler can schedule (move) insns to reduce stalls

  Basic pipeline scheduling: eliminate back-to-back load-use pairs
  Example code sequence: a = b + c; d = f – e;
  MIPS Notation:

  “ld r2,4(sp)” is “ld [sp+4]r2” “st r1, 0(sp)” is “st r1[sp+0]”

•  What are some limitations/requirements for this approach?

Before
ld r2,4(sp)
ld r3,8(sp)
add r3,r2,r1 //stall
st r1,0(sp)
ld r5,16(sp)
ld r6,20(sp)
sub r5,r6,r4 //stall
st r4,12(sp)

After
ld r2,4(sp)
ld r3,8(sp)
ld r5,16(sp)
add r3,r2,r1 //no stall
ld r6,20(sp)
st r1,0(sp)
sub r5,r6,r4 //no stall
st r4,12(sp)

Compsci 220 / ECE 252 (Lebeck): Pipelining 32

Compiler Scheduling Requires
•  Large scheduling scope

  Independent instruction to put between load-use pairs
+  Original example: large scope, two independent computations
–  This example: small scope, one computation

Before
ld r2,4(sp)
ld r3,8(sp)
add r3,r2,r1 //stall
st r1,0(sp)

After
ld r2,4(sp)
ld r3,8(sp)
add r3,r2,r1 //stall
st r1,0(sp)

What are some other challenges for compiler scheduling?

Compsci 220 / ECE 252 (Lebeck): Pipelining 33

Compiler Scheduling Requires
•  Enough registers

  To hold additional “live” values
  Example code contains 7 different values (including sp)
  Before: max 3 values live at any time → 3 registers enough
  After: max 4 values live → 3 registers not enough → WAR violations

Original
ld r2,4(sp)
ld r1,8(sp)
add r1,r2,r1 //stall
st r1,0(sp)
ld r2,16(sp)
ld r1,20(sp)
sub r2,r1,r1 //stall
st r1,12(sp)

Wrong!
ld r2,4(sp)
ld r1,8(sp)
ld r2,16(sp)
add r1,r2,r1 //WAR
ld r1,20(sp)
st r1,0(sp) //WAR
sub r2,r1,r1
st r1,12(sp)

Compsci 220 / ECE 252 (Lebeck): Pipelining 34

Compiler Scheduling Requires
•  Alias analysis

  Ability to tell whether load/store reference same memory locations
  Determine if load/store can be rearranged

  Example code: easy, all loads/stores use same base register (sp)
  New example: can compiler tell that r8 = sp?

Before
ld r2,4(sp)
ld r3,8(sp)
add r3,r2,r1 //stall
st r1,0(sp)
ld r5,0(r8)
ld r6,4(r8)
sub r5,r6,r4 //stall
st r4,8(r8)

Wrong(?)
ld r2,4(sp)
ld r3,8(sp)
ld r5,0(r8)
add r3,r2,r1
ld r6,4(r8)
st r1,0(sp)
sub r5,r6,r4
st r4,8(r8)

Compsci 220 / ECE 252 (Lebeck): Pipelining 35

WAW Hazards
•  Write-after-write (WAW)

add r2,r3,r1
sub r1,r4,r2
or r6,r3,r1

•  Compiler effects
  Scheduling problem: reordering would leave wrong value in r1

  Later instruction reading r1 would get wrong value
  Artificial: no value flows through dependence

  Eliminate using different output register name for or

•  Pipeline effects
  Doesn’t affect in-order pipeline with single-cycle operations

  One reason for making ALU operations go through M stage
  Can happen with multi-cycle operations (e.g., FP or cache misses)

Compsci 220 / ECE 252 (Lebeck): Pipelining 36

Handling WAW Hazards

•  What to do?
  Option I: stall younger instruction (addf) at writeback

+  Intuitive, simple
–  Lower performance, cascading W structural hazards

  Option II: cancel older instruction (divf) writeback
+ No performance loss
–  What if divf or stf cause an exception (e.g., /0, page fault)?

1 2 3 4 5 6 7 8 9 10
divf f0,f1f2 F D E/ E/ E/ E/ E/ W
stf f2[r1] F D d* d* d* X M W
addf f0,f1f2 F D E+ E+ W

Compsci 220 / ECE 252 (Lebeck): Pipelining 37

Handling Interrupts/Exceptions
•  How are interrupts/exceptions handled in a pipeline?

  Interrupt: external, e.g., timer, I/O device requests
  Exception: internal, e.g., /0, page fault, illegal instruction
  We care about restartable interrupts (e.g. stf page fault)

1 2 3 4 5 6 7 8 9 10
divf f0,f1f2 F D E/ E/ E/ E/ E/ W
stf f2[r1] F D d* d* d* X M W
addf f0,f1f2 F D E+ E+ W

•  VonNeumann says
•  “Insn execution should appear sequential and atomic”

•  Insn X should complete before instruction X+1 should begin
+ Doesn’t physically have to be this way (e.g., pipeline)
•  But be ready to restore to this state at a moments notice

•  Called precise state or precise interrupts

Compsci 220 / ECE 252 (Lebeck): Pipelining 38

Handling Interrupts

•  In this situation
  Make it appear as if divf finished and stf, addf haven’t started
  Allow divf to writeback
  Flush stf and addf (so that’s what a flush is for)

  But addf has already written back
–  Keep an “undo” register file? Complicated
–  Force in-order writebacks? Slow
–  Other solutions? Later

  Invoke exception handler
  Restart stf

1 2 3 4 5 6 7 8 9 10
divf f0,f1f2 F D E/ E/ E/ E/ E/ W
stf f2[r1] F D d* d* d* X M W
addf f0,f1f2 F D E+ E+ W

Compsci 220 / ECE 252 (Lebeck): Pipelining 39

More Interrupt Nastiness

•  What about two simultaneous in-flight interrupts
  Example: stf page fault, divf /0
  Interrupts must be handled in program order (stf first)

  Handler for stf must see program as if divf hasn’t started
  Must defer interrupts until writeback and force in-order writeback

•  In general: interrupts are really nasty
  Some processors (Alpha) only implement precise integer interrupts
  Easier because fewer WAW scenarios
  Most floating-point interrupts are non-restartable anyway

  divf /0 rescale computation to prevent underflow
  Typically doesn’t restart computation at excepting instruction

1 2 3 4 5 6 7 8 9 10
divf f0,f1f2 F D E/ E/ E/ E/ E/ W
stf f2[r1] F D d* d* d* X M W
divf f0,f4f2 F D E/ E/ E/ E/ E/ W

Compsci 220 / ECE 252 (Lebeck): Pipelining 40

WAR Hazards
•  Write-after-read (WAR)

add r2,r3,r1
sub r5,r4,r2
or r6,r3,r1

•  Compiler effects
  Scheduling problem: reordering would mean add uses wrong value for r2
  Artificial: solve using different output register name for sub

•  Pipeline effects
  Can’t happen in simple in-order pipeline
  Can happen with out-of-order execution

Compsci 220 / ECE 252 (Lebeck): Pipelining 41

Memory Data Hazards
•  So far, have seen/dealt with register dependences

  Dependences also exist through memory

st r2[r1]
ld [r1]r4
st r5[r1]
Read-after-write (RAW)

st r2[r1]
ld [r1]r4
st r5[r1]
Write-after-read (WAR)

st r2[r1]
ld [r1]r4
st r5[r1]
Write-after-write (WAW)

•  But in an in-order pipeline like ours, they do not become hazards
•  Memory read and write happen at the same stage

•  Register read happens three stages earlier than register write
•  In general: memory dependences more difficult than register

1 2 3 4 5 6 7 8 9 10
st r2[r1] F D X M W
ld [r1]r4 F D X M W

Compsci 220 / ECE 252 (Lebeck): Pipelining 42

Control Hazards

•  Control hazards
  Must fetch post branch insns before branch outcome is known
  Default: assume “not-taken” (at fetch, can’t tell it’s a branch)
  Control hazards indicated with c* (or not at all)
  Taken branch penalty is 2 cycles

•  Back of the envelope calculation
  Branch: 20%, other: 80%, 75% of branches are taken
  CPIBASE = 1
  CPIBASE+BRANCH = 1 + 0.20*0.75*2 = 1.3
–  Branches cause 30% slowdown

1 2 3 4 5 6 7 8 9
addi r1,1r3 F D X M W
bnez r3,targ F D X M W
st r6[r7+4] c* c* F D X M W

Compsci 220 / ECE 252 (Lebeck): Pipelining 43

ISA Branch Techniques

•  Fast branch: resolves at D, not X
  Test must be comparison to zero or equality, no time for ALU (RISC…)
+  New taken branch penalty is 1
–  Additional comparison insns (e.g., cmplt, slt) for complex tests
–  Must bypass into decode now, too

•  Delayed branch: branch that takes effect one insn later
  Schedule insns that are independent of branch into “branch delay slot”
  Preferably from before branch (always helps then)
  But from after branch OK too

  As long as no undoable effects (e.g., a store)
  Upshot: short-sighted feature (MIPS regrets it)

–  Not a big win in today’s pipelines
–  Complicates interrupt handling

Compsci 220 / ECE 252 (Lebeck): Pipelining 44

Big Idea: Speculation
•  Speculation

  “Engagement in risky transactions on the chance of profit”

•  Speculative execution
  Execute before all parameters known with certainty

•  Correct speculation
+  Avoid stall, improve performance

•  Incorrect speculation (mis-speculation)
–  Must abort/flush/squash incorrect instructions
–  Must undo incorrect changes (recover pre-speculation state)

The “game”: [%correct * gain] > [(1–%correct) * penalty]

Compsci 220 / ECE 252 (Lebeck): Pipelining 45

Control Hazards: Control Speculation
•  Deal with control hazards with control speculation

  Unknown parameter: are these the correct insns to execute next?
•  Mechanics

  Guess branch target, start fetching at guessed position
  Execute branch to verify (check) guess

  Correct speculation? keep going
  Mis-speculation? Flush mis-speculated insns

  Don’t write registers or memory until prediction verified

Compsci 220 / ECE 252 (Lebeck): Pipelining 46

Control Hazards: Control Speculation
•  Speculation game for in-order 5 stage pipeline

  Gain = 2 cycles
  Penalty = 0 cycles

  No penalty → mis-speculation no worse than stalling
  %correct = branch prediction

  Static (compiler) ~85%, dynamic (hardware) >95%
  Not much better? Static has 3X mispredicts!

Compsci 220 / ECE 252 (Lebeck): Pipelining 47

Control Speculation Recovery

•  Mis-speculation recovery: what to do on wrong guess
  Not too painful in an in-order pipeline
  Branch resolves in X
+  Younger insns (in F, D) haven’t changed permanent state
  Flush insns currently in F/D and D/X (i.e., replace with nops)

1 2 3 4 5 6 7 8 9
 addi r1,1r3 F D X M W
 bnez r3,targ F D X M W
 st r6[r7+4] F D -- -- --
targ:add r4,r5r4 F -- -- -- --
targ:add r4,r5r4 F D X M W

Recovery:

Compsci 220 / ECE 252 (Lebeck): Pipelining 48

Control Speculation

•  Correct speculation
  Great! Everything flows nicely, no stalls

•  But, we need to guess branch target correctly!

1 2 3 4 5 6 7 8 9
 addi r1,1r3 F D X M W
 bnez r3,targ F D X M W
 st r6[r7+4] F D X M W
targ:add r4,r5r4 F D X M W

Correct:

speculative

Compsci 220 / ECE 252 (Lebeck): Pipelining 49

Dynamic Branch Prediction

•  BP part I: target predictor
  Applies to all control transfers
  Supplies target PC, tells if insn is a branch prior to decode
+  Easy

•  BP part II: direction predictor
  Applies to conditional branches only
  Predicts taken/not-taken
–  Harder

regfile

D$ I$
B
P

Compsci 220 / ECE 252 (Lebeck): Pipelining 50

Branch Target Buffer

•  Branch target buffer (BTB)
  A small cache: address = PC, data = target-PC

  Hit? This is a control insn and it’s going to target-PC (if “taken”)
  Miss? Not a control insn, or one I have never seen before

  Partial data/tags: full tag not necessary, target-PC is just a guess
  Aliasing: tag match, but not actual match (OK for BTB)

  Pentium4 BTB: 2K entries, 4-way set-associative

[13:2] [19:10]

[9:2] 1:0 [31:10]

[13:2] [19:10]

PC

= [9:2] 1:0 [31:13] [13:2]
target-PC branch?

Compsci 220 / ECE 252 (Lebeck): Pipelining 51

Why Does a BTB Work?
•  Because control insn targets are stable

  Direct means constant target, indirect means target in register
+  Direct conditional branches? Check
+  Direct calls? Check
+  Direct unconditional jumps? Check

+  Indirect conditional branches? Not that useful→not widely supported
  Indirect calls? Two idioms

+ Dynamically linked functions (DLLs)? Check
+ Dynamically dispatched (virtual) functions? Pretty much check

  Indirect unconditional jumps? Two idioms
–  Switches? Not really, but these are rare
–  Returns? Nope, but…

Compsci 220 / ECE 252 (Lebeck): Pipelining 52

Return Address Stack (RAS)

•  Return addresses are easy to predict without a BTB
  Hardware return address stack (RAS) tracks call sequence
  Calls push PC+4 onto RAS
  Prediction for returns is RAS[TOS]
  Q: how can you tell if an insn is a return before decoding it?

  A1: Add tags to make RAS a cache
  A2: (Better) attach pre-decode bits to I$

•  Written after first time insn executes
•  Two useful bits: return?, conditional-branch?

I$
PC

BTB DIRP RAS
+4

instruction next-PC

Compsci 220 / ECE 252 (Lebeck): Pipelining 53

Branch Direction Prediction
•  Direction predictor (DIRP)

  Map conditional-branch PC to taken/not-taken (T/N) decision
  Seemingly innocuous, but quite difficult to do well
  Individual conditional branches often unbiased or weakly biased

  90%+ one way or the other considered “biased”

Compsci 220 / ECE 252 (Lebeck): Pipelining 54

Branch History Table (BHT)
•  Branch history table (BHT): simplest direction predictor

  PC indexes table of bits (0 = N, 1 = T), no tags
  Essentially: branch will go same way it went last time
  Problem: consider inner loop branch below (* = mis-prediction)

for (i=0;i<100;i++)
 for (j=0;j<3;j++)
 // whatever

–  Two “built-in” mis-predictions per inner loop iteration
–  Branch predictor “changes its mind too quickly”

State/prediction N* T T T* N* T T T* N* T T T*

Outcome T T T N T T T N T T T N

Compsci 220 / ECE 252 (Lebeck): Pipelining 55

Two-Bit Saturating Counters (2bc)
•  Two-bit saturating counters (2bc) [Smith]

  Replace each single-bit prediction
  (0,1,2,3) = (N,n,t,T)

  Force DIRP to mis-predict twice before “changing its mind”

+  Fixes this pathology (which is not contrived, by the way)

State/prediction N* n* t T* t T T T* t T T T*

Outcome T T T N T T T N T T T N

Compsci 220 / ECE 252 (Lebeck): Pipelining 56

Correlated Predictor
•  Correlated (two-level) predictor [Patt]

  Exploits observation that branch outcomes are correlated
  Maintains separate prediction per (PC, BHR)

  Branch history register (BHR): recent branch outcomes
  Simple working example: assume program has one branch

  BHT: one 1-bit DIRP entry
  BHT+2BHR: 4 1-bit DIRP entries

–  We didn’t make anything better, what’s the problem?

State/prediction BHR=NN N* T T T T T T T T T T T

“active pattern” BHR=NT N N* T T T T T T T T T T

BHR=TN N N N N N* T T T T T T T

BHR=TT N N N* T* N N N* T* N N N* T*
Outcome T T T N T T T N T T T N

Compsci 220 / ECE 252 (Lebeck): Pipelining 57

Correlated Predictor
•  What happened?

  BHR wasn’t long enough to capture the pattern
  Try again: BHT+3BHR: 8 1-bit DIRP entries

+  No mis-predictions after predictor learns all the relevant patterns

State/prediction BHR=NNN N* T T T T T T T T T T T

BHR=NNT N N* T T T T T T T T T T

BHR=NTN N N N N N N N N N N N N

“active pattern” BHR=NTT N N N* T T T T T T T T T

BHR=TNN N N N N N N N N N N N N

BHR=TNT N N N N N N* T T T T T T

BHR=TTN N N N N N* T T T T T T T

BHR=TTT N N N N N N N N N N N N

Outcome T T T N T T T N T T T N

Compsci 220 / ECE 252 (Lebeck): Pipelining 58

Correlated Predictor
•  Design choice I: one global BHR or one per PC (local)?

  Each one captures different kinds of patterns
  Global is better, captures local patterns for tight loop branches

•  Design choice II: how many history bits (BHR size)?
  Tricky one
+  Longer BHRs are better for some apps, shorter better for others
–  BHT utilization decreases w/ long BHRs

–  Many history patterns are never seen
–  Many branches are history independent (don’t care)
  PC ^ BHR allows multiple PCs to dynamically share BHT
  BHR length < log2(BHT size)

–  Predictor takes longer to train
  Typical length: 8–12

Compsci 220 / ECE 252 (Lebeck): Pipelining 59

Hybrid Predictor
•  Hybrid (tournament) predictor [McFarling]

  Attacks correlated predictor BHT utilization problem
  Idea: combine two predictors

  Simple BHT predicts history independent branches
  Correlated predictor predicts only branches that need history
  Chooser assigns branches to one predictor or the other
  Branches start in simple BHT, move mis-prediction threshold

+  Correlated predictor can be made smaller, handles fewer branches
+  90–95% accuracy

PC

BHR B
H

T

B
H

T

ch
oo

se
r

Compsci 220 / ECE 252 (Lebeck): Pipelining 60

Research: Perceptron Predictor
•  Perceptron predictor [Jimenez]

  Attacks BHR size problem using machine learning approach
  BHT replaced by table of function coefficients Fi (signed)

  Predict taken if ∑(BHRi*Fi)> threshold

+  Table size #PC*|BHR|*|F| (can use long BHR: ~60 bits)
–  Equivalent correlated predictor would be #PC*2|BHR|

  How does it learn? Update Fi when branch is taken
  BHRi == 1 ? Fi++ : Fi– –;
  “don’t care” Fi bits stay near 0, important Fi bits saturate

+  Hybrid BHT/perceptron accuracy: 95–98%

PC

BHR

F

∑ Fi*BHRi > thresh

Compsci 220 / ECE 252 (Lebeck): Pipelining 61

Branch Prediction Performance
•  Same parameters

  Branch: 20%, load: 20%, store: 10%, other: 50%
  75% of branches are taken

•  Dynamic branch prediction
  Branches predicted with 95% accuracy
  CPI = 1 + 0.20*0.05*2 = 1.02

Compsci 220 / ECE 252 (Lebeck): Pipelining 62

Pipeline Performance Summary
•  Base CPI is 1, but hazards increase it

•  Nothing magical about a 5 stage pipeline
  Pentium4 has 22 stage pipeline

•  Increasing pipeline depth
+  Increases clock frequency (that’s why companies do it)
–  But decreases IPC
  Branch mis-prediction penalty becomes longer

  More stages between fetch and whenever branch computes
  Non-bypassed data hazard stalls become longer

  More stages between register read and write
  At some point, CPI losses offset clock gains, question is when?

Compsci 220 / ECE 252 (Lebeck): Pipelining 63

Dynamic Pipeline Power
•  Remember control-speculation game

  [2 cycles * %correct] – [0 cycles * (1–%correct)]
  No penalty → mis-speculation no worse than stalling
  This is a performance-only view
  From a power standpoint, mis-speculation is worse than stalling

•  Power control-speculation game
  [0 nJ * %correct] – [X nJ * (1–%correct)]
  No benefit → correct speculation no better than stalling

  Not exactly, increased execution time increases static power
  How to balance the two?

Compsci 220 / ECE 252 (Lebeck): Pipelining 64

Research: Speculation Gating
•  Speculation gating [Manne+]

  Extend branch predictor to give prediction + confidence
  Speculate on high-confidence (mis-prediction unlikely) branches
  Stall (save energy) on low-confidence branches

•  Confidence estimation
  What kind of hardware circuit estimates confidence?
  Hard in absolute sense, but easy relative to given threshold
  Counter-scheme similar to %miss threshold for cache resizing
  Example: assume 90% accuracy is high confidence

  PC-indexed table of confidence-estimation counters
  Correct prediction? table[PC]+=1 : table[PC]–=9;
  Prediction for PC is confident if table[PC] > 0;

Compsci 220 / ECE 252 (Lebeck): Pipelining 65

Research: Razor

•  Razor [Uht, Ernst+]
  Identify pipeline stages with narrow signal margins (e.g., X)
  Add “Razor” X/M latch: relatches X/M input signals after safe delay
  Compare X/M latch with “safe” razor X/M latch, different?

  Flush F,D,X & M
  Restart M using X/M razor latch, restart F using D/X latch

+  Pipeline will not “break” → reduce VDD until flush rate too high
+  Alternatively: “over-clock” until flush rate too high

regfile

D$ I$
B
P

==

Compsci 220 / ECE 252 (Lebeck): Pipelining 66

Summary
•  Principles of pipelining

  Effects of overhead and hazards
  Pipeline diagrams

•  Data hazards
  Stalling and bypassing

•  Control hazards
  Branch prediction

•  Power techniques
  Dynamic power: speculation gating
  Static and dynamic power: razor latches

Compsci 220 / ECE 252 (Lebeck): Pipelining 67

Research: Runahead Execution

•  In-order writebacks essentially imply stalls on D$ misses
  Can save power … or use idle time for performance

•  Runahead execution [Dundas+]
  Shadow regfile kept in sync with main regfile (write to both)
  D$ miss: continue executing using shadow regfile (disable stores)
  D$ miss returns: flush pipe and restart with stalled PC
+  Acts like a smart prefetch engine
+  Performs better as cache tmiss grows (relative to clock period)

regfile

D$ I$

+
4

S-regfile

