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This Unit: Pipelining 

•  Basic Pipelining 
  Single, in-order issue 
  Clock rate vs. IPC 

•  Data Hazards 
  Hardware: stalling and bypassing 
  Software: pipeline scheduling 

•  Control Hazards 
  Branch prediction  

•  Precise state 

Application 

OS 

Firmware Compiler 

CPU I/O 

Memory 

Digital Circuits 

Gates & Transistors 
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Quick Review 

•  Basic datapath: fetch, decode, execute 
•  Single-cycle control: hardwired 

+  Low CPI (1) 
–  Long clock period (to accommodate slowest instruction) 

•  Multi-cycle control: micro-programmed 
+  Short clock period 
–  High CPI 

•  Can we have both low CPI and short clock period? 
  Not if datapath executes only one instruction at a time 
  No good way to make a single instruction go faster 

insn0.fetch, dec, exec 
Single-cycle 

Multi-cycle 

insn1.fetch, dec, exec 

insn0.dec insn0.fetch 
insn1.dec insn1.fetch 

insn0.exec 
insn1.exec 
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Pipelining 

•  Important performance technique 
  Improves instruction throughput rather instruction latency 

•  Begin with multi-cycle design 
  When instruction advances from stage 1 to 2 
  Allow next instruction to enter stage 1 
  Form of parallelism: “insn-stage parallelism” 
  Individual instruction takes the same number of stages 
+  But instructions enter and leave at a much faster rate 

•  Automotive assembly line analogy 

insn0.dec insn0.fetch 
insn1.dec insn1.fetch Multi-cycle 

Pipelined 

insn0.exec 
insn1.exec 

insn0.dec insn0.fetch 
insn1.dec insn1.fetch 
insn0.exec 

insn1.exec 
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5 Stage Pipelined Datapath 

•  Temporary values (PC,IR,A,B,O,D) re-latched every stage 
  Why? 5 insns may be in pipeline at once, they share a single PC? 
  Notice, PC not latched after ALU stage (why not?) 

PC I$ Register 
File 

s1 s2 d D$ 

+ 
4 

PC 

IR 

PC 

A 

B 

IR 

O 

B 
IR 

O 

D 

IR 
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Pipeline Terminology 

•  Five stage: Fetch, Decode, eXecute, Memory, Writeback 
  Nothing magical about the number 5 (Pentium 4 has 22 stages) 

•  Latches (pipeline registers) named by stages they separate 
  PC, F/D, D/X, X/M, M/W 

PC I$ Register 
File 

s1 s2 d D$ 

+ 
4 

PC 

IR 

PC 

A 

B 

IR 

O 

B 
IR 

O 

D 

IR PC 
F/D D/X X/M M/W 
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Pipeline Control 

•  One single-cycle controller, but pipeline the control signals 

PC I$ Register 
File 

s1 s2 d D$ 

+ 
4 

PC 

IR 

PC 

A 

B 

IR 

O 

B 
IR 

O 

D 

IR 

CTRL 

xC 

mC 

wC 

mC 

wC 

wC 
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Abstract Pipeline 

•  This is an integer pipeline 
  Execution stages are X,M,W 

•  Usually also one or more floating-point (FP) pipelines 
  Separate FP register file 
  One “pipeline” per functional unit: E+, E*, E/ 

  “Pipeline”: functional unit need not be pipelined (e.g, E/) 
  Execution stages are E+,E+’,W (no M) 

regfile 

D$ 

PC F/D D/X X/M M/W 

I$ 

+ 
4 
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Floating Point Pipelines 

I$ 

I-regfile 

D$ 

+ 
4 

F-regfile 

E/ 

E 
+ 

E 
+’ 

E* E*’ E*’’ 
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Pipeline Diagram 

•  Pipeline diagram 
  Cycles across, insns down 
  Convention: X means ld r4,0(r5) finishes execute stage and writes 

into X/M latch at end of cycle 4 

•  Reverse stream analogy 
  “Downstream”: earlier stages, younger insns 
  “Upstream”: later stages, older insns 
  Reverse? instruction stream fixed, pipeline flows over it 

  Architects see instruction stream as fixed by program/compiler 

1 2 3 4 5 6 7 8 9 
add r3,r2,r1 F D X M W 
ld r4,0(r5) F D X M W 
st r6,4(r7) F D X M W 

Compsci 220 / ECE 252 (Lebeck): Pipelining 11 

Pipeline Performance Calculation 
•  Back of the envelope calculation 

  Branch: 20%, load: 20%, store: 10%, other: 50% 

•  Single-cycle 
  Clock period = 50ns, CPI = 1 
  Performance = 50ns/insn 

•  Pipelined 
  Clock period = 12ns 
  CPI = 1 (each insn takes 5 cycles, but 1 completes each cycle) 
  Performance = 12ns/insn 
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Principles of Pipelining 
•  Let: insn execution require N stages, each takes tn time 
•  Single-cycle execution 

  L1 (1-insn latency) = ∑tn 

  T (throughput) = 1/L1 

  LM (M-insn latency, where M>>1) = M*L1 

•  Now: N-stage pipeline 
  L1+P = L1 

  T+P = 1/max(tn) ≤ N/L1 

  If tn are equal (i.e., max(tn) = L1/N), throughput = N/L1  
  LM+P = M*max(tn) ≥ M*L1/N 
  S+P (speedup) = [M*L1 / (≥ M*L1/N)] = ≤ N 

•  Q: for arbitrarily high speedup, use arbitrarily high N? 
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No, Part I: Pipeline Overhead 
•  Let: O be extra delay per pipeline stage 

  Latch overhead: pipeline latches take time 
  Clock/data skew 

•  Now: N-stage pipeline with overhead 
  Assume max(tn) = L1/N 
  L1+P+O = L1 + N*O 

  T+P+O = 1/(L1/N + O) = 1/(1/T + O) ≤ T, ≤ T/O 

  LM+P+O = M*L1/N + M*O = LM+P + M*O  
  S+P+O = [M*L1 / (M*L1/N + M*O)] = ≤ N = S+P, ≤ L1/O 

•  O limits throughput and speedup → useful N 
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No, Part II: Hazards 
•  Dependence: relationship that serializes two insns 

  Data: two insns use the same value or storage location 
  Control: one instruction affects whether another executes at all 
  Maybe: two insns may have a dependence 

•  Hazard: dependence causes potential incorrect execution 
  Possibility of using or corrupting data or execution flow  
  Structural: two insns want to use same structure, one must wait 
  Often fixed with stalls: insn stays in same stage for multiple cycles 

Compsci 220 / ECE 252 (Lebeck): Pipelining 15 

No, Part II: Hazards (continued) 
•  Let: H be average number of hazard stall cycles per instruction 

  L1+P+H = L1+P (no hazards for one instruction) 
  T+P+H = [N/(N+H)]*N/L1 = [N/(N+H)] * T+P 
  LM+P+H = M* L1/N * [(N+H)/N] = [(N+H)/N] * LM+P 

  S+P+H = M*L1 / M*L1/N*[(N+H)/N] = [N/(N+H)]*S+P 

•  H also limit throughput, speedup → useful N 
  N↑→ H↑ (more insns “in flight” → more dependences become hazards) 
  Exact H depends on program, requires detailed simulation/model 
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Clock Rate vs. IPC 
•  Deeper pipeline (bigger N) 

+  frequency↑ 
–  IPC↓ 
  Ultimate metric is IPC * frequency 

  But Intel got people to buy frequency, not IPC * frequency 

•  Trend has been for deeper pipelines 
  Intel example: 

  486: 5 stages (50+ gate delays / clock) 
  Pentium: 7 stages 
  Pentium II/III: 12 stages 
  Pentium 4: 22 stages (10 gate delays / clock) 
  800 MHz Pentium III was faster than 1 GHz Pentium4 
  Intel Core2: 14 stages, less than Pentium 4 
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Optimizing Pipeline Depth 
•  Parameterize clock cycle in terms of gate delays 

  G gate delays to process (fetch, decode, execute) a single insn 
  O gate delays overhead per stage 
  X average stall per instruction per stage 

  Simplistic: real X function much, much more complex 

•  Compute optimal N (pipeline stages) given G,O,X 
  IPC = 1 / (1 + X * N) 
  f = 1 / (G / N + O) 
  Example: G = 80, O = 1, X = 0.16,  

N IPC = 1/(1+0.16*N) freq=1/(80/N+1) IPC*freq 
5 0.56 0.059 0.033 
10 0.38 0.110 0.042 
20 0.33 0.166 0.040 

Optimizes performance! 
What about power? 
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Managing a Pipeline 
•  Proper flow requires two pipeline operations 

  Mess with latch write-enable and clear signals to achieve 

•  Operation I: stall 
  Effect: stops some insns in their current stages 
  Use: make younger insns wait for older ones to complete 
  Implementation: de-assert write-enable 

•  Operation II: flush 
  Effect: removes insns from current stages 
  Use: see later 
  Implementation: assert clear signals 

•  Both stall and flush must be propagated to younger insns 
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Structural Hazards 

•  Structural hazard: resource needed twice in one cycle 
  Example: shared I/D$ 

•  What should we do in this case, and in general? 

1 2 3 4 5 6 7 8 9 
ld r2,0(r1) F D X M W 
add r1,r3,r4 F D X M W 
sub r1,r3,r5 F D X M W 
st r6,0(r1) F D X M W 
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Fixing Structural Hazards 

•  Can fix structural hazards by stalling 
  s* = structural stall 
  Q: which one to stall: ld or and? 

•  Always safe to stall younger instruction (here and) 
•  Fetch stall logic: (X/M.op == ld || X/M.op == st) 

•  But not always the best thing to do performance wise (?) 
+  Low cost, simple 
–  Decreases IPC 
  Upshot: better to avoid by design than to fix 

1 2 3 4 5 6 7 8 9 
ld r2,0(r1) F D X M W 
add r1,r3,r4 F D X M W 
sub r1,r3,r5 F D X M W 
and r6,r1,r2 s* F D X M W 
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Avoiding Structural Hazards (PRS) 
•  Pipeline the contended resource 

+  No IPC degradation, low area, power overheads 
–  Sometimes tricky to implement (e.g., for RAMs) 
  For multi-cycle resources (e.g., multiplier) 

•  Replicate the contended resource 
+  No IPC degradation 
–  Increased area, power, latency (interconnect delay?) 
  For cheap, divisible, or highly contended resources (e.g, I$/D$) 

•  Schedule pipeline to reduce structural hazards (RISC) 
  Design ISA so insn uses a resource at most once  

  Eliminate same insn hazards 
  Always in same pipe stage (hazards between two of same insn) 

  Reason why integer operations forced to go through M stage 
  And always for one cycle 
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Data Hazards 

•  Real insn sequences pass values via registers/memory 
  Three kinds of data dependences (where’s the fourth?) 

add r2,r3r1 
sub r1,r4r2 
or r6,r3r1 
Read-after-write (RAW) 

True-dependence 

add r2,r3r1 
sub r5,r4r2 
or r6,r3r1 
Write-after-read (WAR) 

Anti-dependence 

add r2,r3r1 
sub r1,r4r2 
or r6,r3r1 
Write-after-write (WAW) 

Output-dependence 

•  Dependence is property of the program and ISA 

•  Data hazards: function of data dependences and pipeline 
•  Potential for executing dependent insns in wrong order 
•  Require both insns to be in pipeline (“in flight”) simultaneously 
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Dependences and Loops 
•  Data dependences in loops 

  Intra-loop: within same iteration 
  Inter-loop: across iterations 
  Example: DAXPY (Double precision A X Plus Y) 

for (i=0;i<100;i++) 
 Z[i]=A*X[i]+Y[i]; 

0: ldf f2,X(r1) 
1: mulf f2,f0,f4 
2: ldf f6,Y(r1) 
3: addf f4,f6,f8 
4: stf f8,Z(r1) 
5: addi r1,8,r1 
6: cmplti r1,800,r2 
7: beq r2,Loop 

•  RAW intra: 0→1(f2), 1→3(f4), 2→3
(f6), 3→4(f8), 5→6(r1), 6→7(r2) 

•  RAW inter: 5→0(r1), 5→2(r1), 5→4
(r1), 5→5(r1) 

•  WAR intra: 0→5(r1), 2→5(r1), 4→5(r1) 
•  WAR inter: 1→0(f2), 3→1(f4), 3→2

(f6), 4→3(f8), 6→5(r1), 7→6(r2) 
•  WAW intra: none 
•  WAW inter: 0→0(f2), 1→1(f4), 2→2

(f6), 3→3(f8), 6→6(r2) 
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RAW 
•  Read-after-write (RAW) 

add r2,r3r1 
sub r1,r4r2 
or r6,r3r1 

  Problem: swap would mean sub uses wrong value for r1 
  True: value flows through this dependence 

  Using different output register for add doesn’t help 
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RAW: Detect and Stall 

•  Stall logic: detect and stall reader in D 
(F/D.rs1 & (F/D.rs1==D/X.rd | F/D.rs1==X/M.rd | F/D.rs1==M/W.rd)) | 
(F/D.rs2 & (F/D.rs2==D/X.rd | F/D.rs2==X/M.rd | F/D.rs2==M/W.rd)) 
  Re-evaluated every cycle until no longer true 
+  Low cost, simple 
–  IPC degradation, dependences are the common case 

regfile 

D$ 

PC F/D D/X X/M M/W 

I$ 

+ 
4 
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Two Stall Timings (without bypassing) 
•  Depend on how D and W stages share regfile 

  Each gets regfile for half a cycle 
–  1st half D reads, 2nd half W writes 3 cycle stall 
  d* = data stall, p* = propagated stall 

+  1st half W writes, 2nd half D reads 2 cycle stall 
•  How does the stall logic change here? 

1 2 3 4 5 6 7 8 9 10 
add r2,r3r1 F D X M W 
sub r1,r4r2 F d* d* d* D X M W 
add r5,r6r7 p* p* p* F D X M W 

1 2 3 4 5 6 7 8 9 10 
add r2,r3r1 F D X M W 
sub r1,r4r2 F d* d* D X M W 
add r5,r6r7 p* p* F D X M W 
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Reducing RAW Stalls with Bypassing 

•  Why wait until W stage? Data available after X or M stage 
  Bypass (aka forward) data directly to input of X or M 

  MX: from beginning of M (X output) to input of X  
  WX: from beginning of W (M output) to input of X 
  WM: from beginning of W (M output) to data input of M 
  Two each of MX, WX (figure shows 1) + WM = full bypassing 

+  Reduces stalls in a big way 
–  Additional wires and muxes may increase clock cycle 

regfile 

D$ 

D/X X/M M/W 
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Bypass Logic 

•  Bypass logic: similar to but separate from stall logic 
  Stall logic controls latches, bypass logic controls mux inputs 
  Complement one another: can’t bypass → must stall 
  ALU input mux bypass logic 

  (D/X.rs2 & X/M.rd==D/X.rs2) → 2   // check first 
  (D/X.rs2 & M/W.rd==D/X.rs2) → 1  // check second 
  (D/X.rs2) → 0                                // check last 

regfile 

D$ 

D/X X/M M/W 
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Pipeline Diagrams with Bypassing 
•  If bypass exists, “from”/“to” stages execute in same cycle 

  Example: full bypassing, use MX bypass 

1 2 3 4 5 6 7 8 9 10 
add r2,r3r1 F D X M W 
sub r1,r4r2 F D X M W 

•  Example: full bypassing, use WX bypass  
1 2 3 4 5 6 7 8 9 10 

add r2,r3r1 F D X M W 
ld [r7]r5 F D X M W 
sub r1,r4r2 F D X M W 

1 2 3 4 5 6 7 8 9 10 
add r2,r3r1 F D X M W 
? F D X M W 

•  Example: WM bypass  

•  Can you think of a code example that uses the WM bypass? 
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Load-Use Stalls 
•  Even with full bypassing, stall logic is unavoidable 

  Load-use stall 
  Load value not ready at beginning of M → can’t use MX bypass  
  Use WX bypass 

1 2 3 4 5 6 7 8 9 10 
ld [r3+4]r1 F D X M W 
sub r1,r4r2 F D d* X M W 

•  Aside: with WX bypassing, stall logic can be in D or X  
1 2 3 4 5 6 7 8 9 10 

ld [r3+4]r1 F D X M W 
sub r1,r4r2 F d* D X M W 

•  Aside II: how does stall/bypass logic handle cache misses? 
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Compiler Scheduling 
•  Compiler can schedule (move) insns to reduce stalls 

  Basic pipeline scheduling: eliminate back-to-back load-use pairs 
  Example code sequence: a = b + c; d = f – e; 
  MIPS Notation:  

  “ld r2,4(sp)” is “ld [sp+4]r2”  “st r1, 0(sp)” is “st r1[sp+0]” 

•  What are some limitations/requirements for this approach? 

Before 
ld r2,4(sp) 
ld r3,8(sp) 
add r3,r2,r1  //stall 
st r1,0(sp) 
ld r5,16(sp) 
ld r6,20(sp) 
sub r5,r6,r4  //stall 
st r4,12(sp) 

After 
ld r2,4(sp) 
ld r3,8(sp) 
ld r5,16(sp) 
add r3,r2,r1  //no stall 
ld r6,20(sp) 
st r1,0(sp) 
sub r5,r6,r4  //no stall 
st r4,12(sp) 
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Compiler Scheduling Requires 
•  Large scheduling scope 

  Independent instruction to put between load-use pairs 
+  Original example: large scope, two independent computations 
–  This example: small scope, one computation 

Before 
ld r2,4(sp) 
ld r3,8(sp) 
add r3,r2,r1  //stall 
st r1,0(sp) 

After 
ld r2,4(sp) 
ld r3,8(sp) 
add r3,r2,r1  //stall 
st r1,0(sp) 

What are some other challenges for compiler scheduling? 
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Compiler Scheduling Requires 
•  Enough registers 

  To hold additional “live” values 
  Example code contains 7 different values (including sp) 
  Before: max 3 values live at any time → 3 registers enough 
  After: max 4 values live → 3 registers not enough → WAR violations 

Original 
ld r2,4(sp) 
ld r1,8(sp) 
add r1,r2,r1  //stall 
st r1,0(sp) 
ld r2,16(sp) 
ld r1,20(sp) 
sub r2,r1,r1  //stall 
st r1,12(sp) 

Wrong! 
ld r2,4(sp) 
ld r1,8(sp) 
ld r2,16(sp) 
add r1,r2,r1  //WAR 
ld r1,20(sp) 
st r1,0(sp)   //WAR 
sub r2,r1,r1 
st r1,12(sp) 
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Compiler Scheduling Requires 
•  Alias analysis 

  Ability to tell whether load/store reference same memory locations 
  Determine if load/store can be rearranged 

  Example code: easy, all loads/stores use same base register (sp) 
  New example: can compiler tell that r8 = sp? 

Before 
ld r2,4(sp) 
ld r3,8(sp) 
add r3,r2,r1  //stall 
st r1,0(sp) 
ld r5,0(r8) 
ld r6,4(r8) 
sub r5,r6,r4  //stall 
st r4,8(r8) 

Wrong(?) 
ld r2,4(sp) 
ld r3,8(sp) 
ld r5,0(r8) 
add r3,r2,r1   
ld r6,4(r8) 
st r1,0(sp) 
sub r5,r6,r4 
st r4,8(r8) 
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WAW Hazards 
•  Write-after-write (WAW) 

add r2,r3,r1 
sub r1,r4,r2 
or r6,r3,r1 

•  Compiler effects 
  Scheduling problem: reordering would leave wrong value in r1 

  Later instruction reading r1 would get wrong value 
  Artificial: no value flows through dependence 

  Eliminate using different output register name for or 

•  Pipeline effects 
  Doesn’t affect in-order pipeline with single-cycle operations 

  One reason for making ALU operations go through M stage 
  Can happen with multi-cycle operations (e.g., FP or cache misses) 
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Handling WAW Hazards 

•  What to do? 
  Option I: stall younger instruction (addf) at writeback 

+  Intuitive, simple 
–  Lower performance, cascading W structural hazards 

  Option II: cancel older instruction (divf) writeback 
+ No performance loss 
–  What if divf or stf cause an exception (e.g., /0, page fault)? 

1 2 3 4 5 6 7 8 9 10 
divf f0,f1f2 F D E/ E/ E/ E/ E/ W 
stf f2[r1] F D d* d* d* X M W 
addf f0,f1f2 F D E+ E+ W 
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Handling Interrupts/Exceptions 
•  How are interrupts/exceptions handled in a pipeline? 

  Interrupt: external, e.g., timer, I/O device requests 
  Exception: internal, e.g., /0, page fault, illegal instruction 
  We care about restartable interrupts (e.g. stf page fault) 

1 2 3 4 5 6 7 8 9 10 
divf f0,f1f2 F D E/ E/ E/ E/ E/ W 
stf f2[r1] F D d* d* d* X M W 
addf f0,f1f2 F D E+ E+ W 

•  VonNeumann says 
•  “Insn execution should appear sequential and atomic” 

•  Insn X should complete before instruction X+1 should begin 
+ Doesn’t physically have to be this way (e.g., pipeline) 
•  But be ready to restore to this state at a moments notice 

•  Called precise state or precise interrupts 
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Handling Interrupts 

•  In this situation 
  Make it appear as if divf finished and stf, addf haven’t started 
  Allow divf to writeback 
  Flush stf and addf (so that’s what a flush is for) 

  But addf has already written back 
–  Keep an “undo” register file? Complicated 
–  Force in-order writebacks? Slow 
–  Other solutions? Later 

  Invoke exception handler 
  Restart stf 

1 2 3 4 5 6 7 8 9 10 
divf f0,f1f2 F D E/ E/ E/ E/ E/ W 
stf f2[r1] F D d* d* d* X M W 
addf f0,f1f2 F D E+ E+ W 
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More Interrupt Nastiness 

•  What about two simultaneous in-flight interrupts 
  Example: stf page fault, divf /0 
  Interrupts must be handled in program order (stf first) 

  Handler for stf must see program as if divf hasn’t started 
  Must defer interrupts until writeback and force in-order writeback 

•  In general: interrupts are really nasty 
  Some processors (Alpha) only implement precise integer interrupts 
  Easier because fewer WAW scenarios 
  Most floating-point interrupts are non-restartable anyway 

  divf /0  rescale computation to prevent underflow 
  Typically doesn’t restart computation at excepting instruction 

1 2 3 4 5 6 7 8 9 10 
divf f0,f1f2 F D E/ E/ E/ E/ E/ W 
stf f2[r1] F D d* d* d* X M W 
divf f0,f4f2 F D E/ E/ E/ E/ E/ W 
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WAR Hazards 
•  Write-after-read (WAR) 

add r2,r3,r1 
sub r5,r4,r2 
or r6,r3,r1 

•  Compiler effects 
  Scheduling problem: reordering would mean add uses wrong value for r2 
  Artificial: solve using different output register name for sub 

•  Pipeline effects 
  Can’t happen in simple in-order pipeline 
  Can happen with out-of-order execution 
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Memory Data Hazards 
•  So far, have seen/dealt with register dependences 

  Dependences also exist through memory 

st r2[r1] 
ld [r1]r4 
st r5[r1] 
Read-after-write (RAW) 

st r2[r1] 
ld [r1]r4 
st r5[r1]  
Write-after-read (WAR) 

st r2[r1] 
ld [r1]r4 
st r5[r1]  
Write-after-write (WAW) 

•  But in an in-order pipeline like ours, they do not become hazards 
•  Memory read and write happen at the same stage 

•  Register read happens three stages earlier than register write 
•  In general: memory dependences more difficult than register 

1 2 3 4 5 6 7 8 9 10 
st r2[r1] F D X M W 
ld [r1]r4 F D X M W 
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Control Hazards 

•  Control hazards 
  Must fetch post branch insns before branch outcome is known 
  Default: assume “not-taken” (at fetch, can’t tell it’s a branch) 
  Control hazards indicated with c* (or not at all) 
  Taken branch penalty is 2 cycles 

•  Back of the envelope calculation 
  Branch: 20%, other: 80%, 75% of branches are taken 
  CPIBASE = 1 
  CPIBASE+BRANCH = 1 + 0.20*0.75*2 = 1.3 
–  Branches cause 30% slowdown 

1 2 3 4 5 6 7 8 9 
addi r1,1r3 F D X M W 
bnez r3,targ F D X M W 
st r6[r7+4] c* c* F D X M W 
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ISA Branch Techniques 

•  Fast branch: resolves at D, not X 
  Test must be comparison to zero or equality, no time for ALU (RISC…) 
+  New taken branch penalty is 1 
–  Additional comparison insns (e.g., cmplt, slt) for complex tests 
–  Must bypass into decode now, too 

•  Delayed branch: branch that takes effect one insn later 
  Schedule insns that are independent of branch into “branch delay slot” 
  Preferably from before branch (always helps then) 
  But from after branch OK too 

  As long as no undoable effects (e.g., a store) 
  Upshot: short-sighted feature (MIPS regrets it) 

–  Not a big win in today’s pipelines 
–  Complicates interrupt handling 
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Big Idea: Speculation 
•  Speculation 

  “Engagement in risky transactions on the chance of profit” 

•  Speculative execution 
  Execute before all parameters known with certainty 

•  Correct speculation 
+  Avoid stall, improve performance 

•  Incorrect speculation (mis-speculation) 
–  Must abort/flush/squash incorrect instructions 
–  Must undo incorrect changes (recover pre-speculation state) 

The “game”: [%correct * gain] > [(1–%correct) * penalty] 
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Control Hazards: Control Speculation 
•  Deal with control hazards with control speculation 

  Unknown parameter: are these the correct insns to execute next? 
•  Mechanics 

  Guess branch target, start fetching at guessed position 
  Execute branch to verify (check) guess 

  Correct speculation? keep going 
  Mis-speculation? Flush mis-speculated insns 

  Don’t write registers or memory until prediction verified 
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Control Hazards: Control Speculation 
•  Speculation game for in-order 5 stage pipeline 

  Gain = 2 cycles 
  Penalty = 0 cycles 

  No penalty → mis-speculation no worse than stalling 
  %correct = branch prediction 

  Static (compiler) ~85%, dynamic (hardware) >95% 
  Not much better? Static has 3X mispredicts! 
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Control Speculation Recovery 

•  Mis-speculation recovery: what to do on wrong guess 
  Not too painful in an in-order pipeline 
  Branch resolves in X 
+  Younger insns (in F, D) haven’t changed permanent state 
  Flush insns currently in F/D and D/X (i.e., replace with nops) 

1 2 3 4 5 6 7 8 9 
     addi r1,1r3 F D X M W 
     bnez r3,targ F D X M W 
     st r6[r7+4] F D -- -- -- 
targ:add r4,r5r4 F -- -- -- -- 
targ:add r4,r5r4 F D X M W 

Recovery: 
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Control Speculation 

•  Correct speculation 
  Great! Everything flows nicely, no stalls 

•  But, we need to guess branch target correctly! 

1 2 3 4 5 6 7 8 9 
     addi r1,1r3 F D X M W 
     bnez r3,targ F D X M W 
     st r6[r7+4] F D X M W 
targ:add r4,r5r4 F D X M W 

Correct: 

speculative 
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Dynamic Branch Prediction 

•  BP part I: target predictor 
  Applies to all control transfers 
  Supplies target PC, tells if insn is a branch prior to decode 
+  Easy 

•  BP part II: direction predictor 
  Applies to conditional branches only 
  Predicts taken/not-taken 
–  Harder 

regfile 

D$ I$ 
B 
P 
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Branch Target Buffer 

•  Branch target buffer (BTB) 
  A small cache: address = PC, data = target-PC 

  Hit? This is a control insn and it’s going to target-PC (if “taken”) 
  Miss? Not a control insn, or one I have never seen before 

  Partial data/tags: full tag not necessary, target-PC is just a guess 
  Aliasing: tag match, but not actual match (OK for BTB) 

  Pentium4 BTB: 2K entries, 4-way set-associative 

[13:2] [19:10] 

[9:2] 1:0 [31:10] 

[13:2] [19:10] 

PC 

= [9:2] 1:0 [31:13] [13:2] 
target-PC branch? 
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Why Does a BTB Work? 
•  Because control insn targets are stable  

  Direct means constant target, indirect means target in register 
+  Direct conditional branches? Check 
+  Direct calls? Check 
+  Direct unconditional jumps? Check 

+  Indirect conditional branches? Not that useful→not widely supported 
  Indirect calls? Two idioms 

+ Dynamically linked functions (DLLs)? Check 
+ Dynamically dispatched (virtual) functions? Pretty much check 

  Indirect unconditional jumps? Two idioms 
–  Switches? Not really, but these are rare 
–  Returns? Nope, but… 

Compsci 220 / ECE 252 (Lebeck): Pipelining 52 

Return Address Stack (RAS) 

•  Return addresses are easy to predict without a BTB 
  Hardware return address stack (RAS) tracks call sequence 
  Calls push PC+4 onto RAS 
  Prediction for returns is RAS[TOS] 
  Q: how can you tell if an insn is a return before decoding it? 

  A1: Add tags to make RAS a cache 
  A2: (Better) attach pre-decode bits to I$ 

•  Written after first time insn executes 
•  Two useful bits: return?, conditional-branch? 

I$ 
PC 

BTB DIRP RAS 
+4 

instruction next-PC 
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Branch Direction Prediction 
•  Direction predictor (DIRP) 

  Map conditional-branch PC to taken/not-taken (T/N) decision 
  Seemingly innocuous, but quite difficult to do well 
  Individual conditional branches often unbiased or weakly biased 

  90%+ one way or the other considered “biased” 
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Branch History Table (BHT) 
•  Branch history table (BHT): simplest direction predictor 

  PC indexes table of bits (0 = N, 1 = T), no tags 
  Essentially: branch will go same way it went last time 
  Problem: consider inner loop branch below (* = mis-prediction) 

for (i=0;i<100;i++) 
   for (j=0;j<3;j++) 
      // whatever 

–  Two “built-in” mis-predictions per inner loop iteration 
–  Branch predictor “changes its mind too quickly” 

State/prediction N* T T T* N* T T T* N* T T T* 

Outcome T T T N T T T N T T T N 
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Two-Bit Saturating Counters (2bc) 
•  Two-bit saturating counters (2bc) [Smith] 

  Replace each single-bit prediction 
  (0,1,2,3) = (N,n,t,T) 

  Force DIRP to mis-predict twice before “changing its mind” 

+  Fixes this pathology (which is not contrived, by the way) 

State/prediction N* n* t T* t T T T* t T T T* 

Outcome T T T N T T T N T T T N 
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Correlated Predictor 
•  Correlated (two-level) predictor [Patt] 

  Exploits observation that branch outcomes are correlated 
  Maintains separate prediction per (PC, BHR) 

  Branch history register (BHR): recent branch outcomes 
  Simple working example: assume program has one branch 

  BHT: one 1-bit DIRP entry 
  BHT+2BHR: 4 1-bit DIRP entries 

–  We didn’t make anything better, what’s the problem? 

State/prediction BHR=NN N* T T T T T T T T T T T 

“active pattern” BHR=NT N N* T T T T T T T T T T 

BHR=TN N N N N N* T T T T T T T 

BHR=TT N N N* T* N N N* T* N N N* T* 
Outcome T T T N T T T N T T T N 
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Correlated Predictor 
•  What happened? 

  BHR wasn’t long enough to capture the pattern 
  Try again: BHT+3BHR: 8 1-bit DIRP entries 

+  No mis-predictions after predictor learns all the relevant patterns 

State/prediction BHR=NNN N* T T T T T T T T T T T 

BHR=NNT N N* T T T T T T T T T T 

BHR=NTN N N N N N N N N N N N N 

“active pattern” BHR=NTT N N N* T T T T T T T T T 

BHR=TNN N N N N N N N N N N N N 

BHR=TNT N N N N N N* T T T T T T 

BHR=TTN N N N N N* T T T T T T T 

BHR=TTT N N N N N N N N N N N N 

Outcome T T T N T T T N T T T N 
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Correlated Predictor 
•  Design choice I: one global BHR or one per PC (local)? 

  Each one captures different kinds of patterns 
  Global is better, captures local patterns for tight loop branches 

•  Design choice II: how many history bits (BHR size)? 
  Tricky one 
+  Longer BHRs are better for some apps, shorter better for others 
–  BHT utilization decreases w/ long BHRs 

–  Many history patterns are never seen 
–  Many branches are history independent (don’t care) 
  PC ^ BHR allows multiple PCs to dynamically share BHT 
  BHR length < log2(BHT size) 

–  Predictor takes longer to train 
  Typical length: 8–12 
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Hybrid Predictor 
•  Hybrid (tournament) predictor [McFarling] 

  Attacks correlated predictor BHT utilization problem 
  Idea: combine two predictors 

  Simple BHT predicts history independent branches 
  Correlated predictor predicts only branches that need history 
  Chooser assigns branches to one predictor or the other 
  Branches start in simple BHT, move mis-prediction threshold 

+  Correlated predictor can be made smaller, handles fewer branches 
+  90–95% accuracy 

PC 

BHR B
H

T 

B
H

T 
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Research: Perceptron Predictor 
•  Perceptron predictor [Jimenez] 

  Attacks BHR size problem using machine learning approach 
  BHT replaced by table of function coefficients Fi (signed) 

  Predict taken if ∑(BHRi*Fi)> threshold 

+  Table size #PC*|BHR|*|F|  (can use long BHR: ~60 bits) 
–  Equivalent correlated predictor would be #PC*2|BHR| 

  How does it learn? Update Fi when branch is taken 
  BHRi == 1 ? Fi++ : Fi– –; 
  “don’t care” Fi bits stay near 0, important Fi bits saturate 

+  Hybrid BHT/perceptron accuracy: 95–98% 

PC 

BHR 

F 

∑ Fi*BHRi > thresh 
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Branch Prediction Performance 
•  Same parameters 

  Branch: 20%, load: 20%, store: 10%, other: 50% 
  75% of branches are taken 

•  Dynamic branch prediction 
  Branches predicted with 95% accuracy 
  CPI = 1 + 0.20*0.05*2 = 1.02 
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Pipeline Performance Summary 
•  Base CPI is 1, but hazards increase it 

•  Nothing magical about a 5 stage pipeline 
  Pentium4 has 22 stage pipeline 

•  Increasing pipeline depth  
+  Increases clock frequency (that’s why companies do it) 
–  But decreases IPC 
  Branch mis-prediction penalty becomes longer 

  More stages between fetch and whenever branch computes 
  Non-bypassed data hazard stalls become longer 

  More stages between register read and write 
  At some point, CPI losses offset clock gains, question is when? 
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Dynamic Pipeline Power 
•  Remember control-speculation game 

  [2 cycles * %correct] – [0 cycles * (1–%correct)] 
  No penalty → mis-speculation no worse than stalling 
  This is a performance-only view 
  From a power standpoint, mis-speculation is worse than stalling 

•  Power control-speculation game 
  [0 nJ * %correct] – [X nJ * (1–%correct)] 
  No benefit → correct speculation no better than stalling 

  Not exactly, increased execution time increases static power 
  How to balance the two? 
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Research: Speculation Gating 
•  Speculation gating [Manne+] 

  Extend branch predictor to give prediction + confidence 
  Speculate on high-confidence (mis-prediction unlikely) branches 
  Stall (save energy) on low-confidence branches 

•  Confidence estimation 
  What kind of hardware circuit estimates confidence?  
  Hard in absolute sense, but easy relative to given threshold 
  Counter-scheme similar to %miss threshold for cache resizing 
  Example: assume 90% accuracy is high confidence 

  PC-indexed table of confidence-estimation counters 
  Correct prediction?  table[PC]+=1 : table[PC]–=9; 
  Prediction for PC is confident if table[PC] > 0; 
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Research: Razor 

•  Razor [Uht, Ernst+] 
  Identify pipeline stages with narrow signal margins (e.g., X) 
  Add “Razor” X/M latch: relatches X/M input signals after safe delay 
  Compare X/M latch with “safe” razor X/M latch, different? 

  Flush F,D,X & M 
  Restart M using X/M razor latch, restart F using D/X latch 

+  Pipeline will not “break” → reduce VDD until flush rate too high 
+  Alternatively: “over-clock” until flush rate too high 

regfile 

D$ I$ 
B 
P 

== 
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Summary 
•  Principles of pipelining 

  Effects of overhead and hazards 
  Pipeline diagrams 

•  Data hazards 
  Stalling and bypassing 

•  Control hazards 
  Branch prediction 

•  Power techniques 
  Dynamic power: speculation gating 
  Static and dynamic power: razor latches 
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Research: Runahead Execution 

•  In-order writebacks essentially imply stalls on D$ misses 
  Can save power … or use idle time for performance 

•  Runahead execution [Dundas+] 
  Shadow regfile kept in sync with main regfile (write to both) 
  D$ miss: continue executing using shadow regfile (disable stores) 
  D$ miss returns: flush pipe and restart with stalled PC 
+  Acts like a smart prefetch engine 
+  Performs better as cache tmiss grows (relative to clock period) 

regfile 
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S-regfile 


