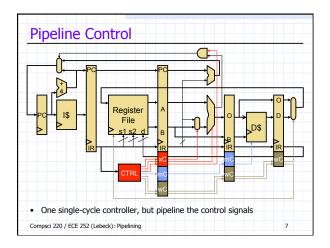
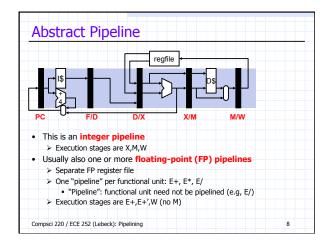
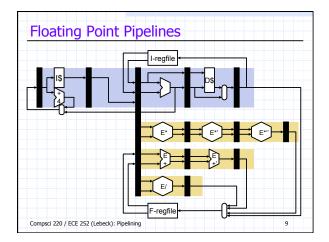

Duke Compsci 220/ ECE 252 Advanced Computer Architecture	
Prof. Alvin R. Lebeck	
Pipelining	
Slides developed by Amir Roth of University of Pennsylvania with sou that included University of Wisconsin slides by Mark Hill, Guri Sohi, Smith, and David Wood.	
Slides enhanced by Milo Martin, Mark Hill, Alvin Lebeck, Dan Sorinan David Wood with sources that included Profs. Asanovic, Falsafi, Ho Lipasti, Shen, Smith, Sohi, Vijaykumar, and Wood	
Compsci 220 / ECE 252 (Lebeck): Pipelining	1


OS Compiler Firmware	Basic Pipelining Single, in-order issue Clock rate vs. IPC
CPU I/O Memory	 Data Hazards > Hardware: stalling and bypassing > Software: pipeline scheduling Control Hazards
Digital Circuits Gates & Transistors	 Control nazards Branch prediction Precise state


insn0.fetch, dec, exec	
Single-cycle	insn1.fetch, dec, exec
insn0.fetch insn0.dec insn0.exec	3
Multi-cycle	insn1.fetch insn1.dec insn1.exec
 Basic datapath: fetch, decode, exe Single-cycle control: hardwired Low CPI (1) Long clock period (to accommodate Multi-cycle control: micro-program 	slowest instruction)
 Can we have both low CPI and shor Not if datapath executes only one in No good way to make a single instru 	istruction at a time


insn0.fe	tch insn0.dec insn0.exe	ec
Multi-cycle		insn1.fetch insn1.dec insn1.exec
insn0.fe	tch insn0.dec insn0.exe	2
Pipelined	insn1.fetch insn1.de	c insn1.exec
	nuiti-cycle design truction advances from st	age 1 to 2
 Begin with n 	nulti-cycle design	
	t instruction to enter stag	
	arallelism: "insn-stage pa	
Individual	l instruction takes the san	ne number of stages
+ But instr	ructions enter and leav	e at a much faster rate
	assembly line analogy	

	1	2	3	4	5	6	7	8	9
add r3,r2,r1	F		Х						
ld r4,0(r5)		F	D			W			
st r6,4(r7)			F	D	Х	М	w		
Pipeline diagram									
> Cycles across, insns	down								
 Convention: X mean into X/M latch at end 			(r5) fin	ishes	exe	cute	stag	e and writes
Reverse stream analo	Jy .								
> "Downstream": earli	er stag	es, y	oung	ger ir	nsns				
"Upstream": later sta	iges, o	lder	insns	5					
Reverse? instruction	strean	n fixe	ed, pi	ipelir	ne flo	ws c	over i	t	
 Architects see in 	-tru ceti	on ct	room	201	fivod	byn	roar	am/r	omniler

Back of the envelope calculation > Branch: 20%, load: 20%, store: 10%, other: 50%
Single-cycle
Clock period = 50ns, CPI = 1
> Performance = 50ns/insn
Pipelined
Clock period = 12ns
CPI = 1 (each insn takes 5 cycles, but 1 completes each cycle)
> Performance = 12ns/insn

 Let 	: insn execution require N stages, each takes t_n time	
	gle-cycle execution	
	L_1 (1-insn latency) = Σt_n	
	T (throughput) = $1/L_1$	
۶	L_M (M-insn latency, where M>>1) = M*L ₁	
• No	w: N-stage pipeline	
Þ	$L_{1+P} = L_1$	
Þ	$T_{+P} = 1/max(t_n) \le N/L_1$	
	 If t_n are equal (i.e., max(t_n) = L₁/N), throughput = N/L₁ 	
	$L_{M+P} = M^*max(t_n) \ge M^*L_1/N$	
>	$S_{+P} \text{ (speedup)} = [M^*L_1 / (\geq M^*L_1/N)] = \leq N$	
• Q:	for arbitrarily high speedup, use arbitrarily high N?	

Let: O be extra delay per pipeline stage	
Latch overhead: pipeline latches take time	
Clock/data skew	
Now: N-stage pipeline with overhead	
> Assume max(t_n) = L_1/N	
> $L_{1+P+O} = L_1 + N*O$	
> $T_{+P+O} = 1/(L_1/N + O) = 1/(1/T + O) \le T_1 \le T/O$	
$> L_{M+P+O} = M*L_1/N + M*O = L_{M+P} + M*O$	
> $S_{+P+O} = [M*L_1 / (M*L_1/N + M*O)] = \le N = S_{+P'} \le L_1/O$	
O limits throughput and speedup \rightarrow useful N	
O limits throughput and speedup \rightarrow useful N	
Lebeck): Pipelining	13

	e: relationship that serializes the serial s	
	insns use the same value or stor	
	one instruction affects whether a	
> Maybe: tv	vo insns <i>may</i> have a dependence	2
Hazard: dep	endence causes potential inco	orrect execution
> Possibility	of using or corrupting data or exe	ecution flow
> Structura	I: two insns want to use same st	ructure, one must wait
Often fixed	with stalls: insn stays in same	stage for multiple cycles

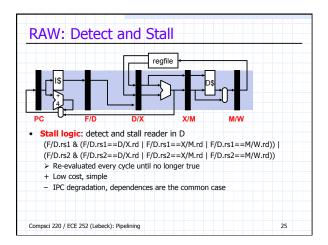
 Let: H be average number of hazard stall cycles L_{1+P+H} = L_{1+P} (no hazards for one instruction) 	per instruction
> $T_{+P+H} = [N/(N+H)]*N/L_1 = [N/(N+H)]*T_{+P}$	
> $L_{M+P+H} = M^* L_1/N^* [(N+H)/N] = [(N+H)/N]^* L_{M+}$ > $S_{+P+H} = M^*L_1 / M^*L_1/N^*[(N+H)/N] = [N/(N+H)]^*S$	
• H also limit throughput, speedup \rightarrow useful N	
 N↑→ H↑ (more insns "in flight" → more depender Exact H depends on program, requires detailed sir 	
Compsci 220 / ECE 252 (Lebeck): Pipelining	15

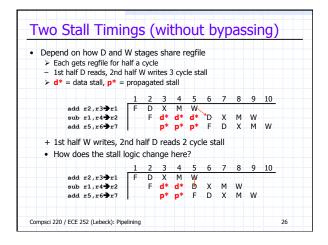
Dec	eper pipeline (bigger N)
+ 1	frequency↑
+ :	IPC.
×	Ultimate metric is IPC * frequency
	 But Intel got people to buy frequency, not IPC * frequency
Tre	nd has been for deeper pipelines
> :	Intel example:
	 486: 5 stages (50+ gate delays / clock)
	Pentium: 7 stages
	Pentium II/III: 12 stages
	 Pentium 4: 22 stages (10 gate delays / clock)
	 800 MHz Pentium III was faster than 1 GHz Pentium4
	Intel Core2: 14 stages, less than Pentium 4

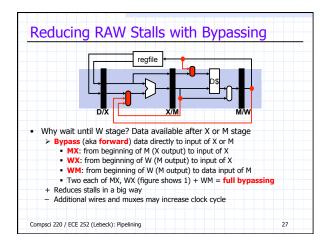
	terize clock cycle in te			
≻ G ga	te delays to process (fet	ch, decode, execute)	a single insn	
> 0 ga	te delays overhead per s	stage		
X av	erage stall per instruction	n per stage		
	Simplistic: real X function	much, much more c	omplex	
	o ontimal N (ninolino (stages) given G O X		
(omput				
	e optimal N (pipeline s = 1 / (1 + X * N)			
≻ IPC	= 1 / (1 + X * N)		•	
> IPC > f = 1	= 1 / (1 + X * N) L / (G / N + O)	Or	otimizes performa	ancel
> IPC > f = 1	= 1 / (1 + X * N)	O 16		
> IPC > f = 1	= 1 / (1 + X * N) L / (G / N + O)	O 16	otimizes performa	
> IPC > f = 1	= 1 / (1 + X * N) L / (G / N + O)	O 16	otimizes performa	
> IPC > f = 1	= 1 / (1 + X * N) L / (G / N + O) nple: G = 80, O = 1, X =	0.16, Or	otimizes performa What about powe	
> IPC > f = 1	= $1 / (1 + X * N)$ L / (G / N + O) nple: G = 80, O = 1, X = IPC = $1/(1+0.16*N)$	0.16, Or freq=1/(80/N+1)	otimizes performa What about power	

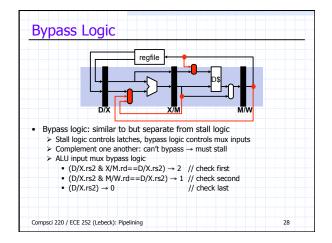
	roper flow requires two pipeline operations Mess with latch write-enable and clear signals to achieve 	
• 0	peration I: stall	
	Effect: stops some insns in their current stages	
	Use: make younger insns wait for older ones to complete	
	Implementation: de-assert write-enable	
• (peration II: flush	
	Effect: removes insns from current stages	
	Use: see later	
	Implementation: assert clear signals	
• E	oth stall and flush must be propagated to younger insns	

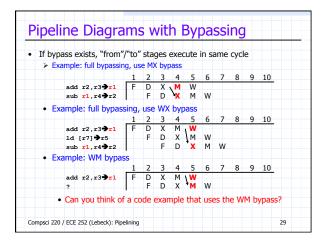
		L 2	3	4	5	6	7	8	9	
ld r2,0(r1)		= D	Х	Μ	W					
add r1,r3,r4		F		Х	М	W				
sub r1,r3,r5			F	D	Х	М	W			
st r6,0(r1)				F	D	Х	Μ	W		
Structural hazard: > Example: shared I/ What should we do i	D\$						ne c	ycle		
Example: shared I/	D\$						ne c	ycle		
Example: shared I/	D\$						ne c	ycle		
Example: shared I/	D\$						ne c	ycle		
Example: shared I/	D\$						ne c	ycle		


	1	2	3	4	5	6	7	8	9	
ld r2,0(r1)	F	D	Х	Μ	W					
add r1,r3,r4		F	D	Х	М	W				
sub r1,r3,r5			F	D	Х	М	W			
and r6,r1,r2				s*	F	D	Х	М	W	
 Always safe to st Fetch stall lo 	aic ()	(/M (- 14	II Y	/M o	n	+	1	
Fetch stall lo But not always th Low cost, simple Decreases IPC	- ·	3 5	op =				• •			


Pipeline the contended resource	
+ No IPC degradation, low area, power overheads	
 Sometimes tricky to implement (e.g., for RAMs) 	
 For multi-cycle resources (e.g., multiplier) 	
Replicate the contended resource	
+ No IPC degradation	
- Increased area, power, latency (interconnect dela	ay?)
For cheap, divisible, or highly contended resource	es (e.g, I\$/D\$)
 Schedule pipeline to reduce structural hazards (RISC)
> Design ISA so insn uses a resource at most once	
 Eliminate same insn hazards 	
> Always in same pipe stage (hazards between two	o of same insn)
 Reason why integer operations forced to go t 	hrough M stage
And always for one cycle	


	pass values via registers/r	
add r2,r3	add <mark>r2</mark> ,r3 → r1	add r2,r3 → r1
sub <mark>r1</mark> ,r4 → r2	sub r5,r4 ⇒ r2	sub r1,r4 → r2
or r6,r3 → r1	or r6,r3 ⇒ r1	or r6,r3 ⇒r1
Read-after-write (RAW) True-dependence	Write-after-read (WAR) Anti-dependence	Write-after-write (WAW) Output-dependence
	operty of the program and	
 Data hazards: for 	unction of data depen	dences and pipeline
 Potential for exec 	uting dependent insns in v	wrong order
 Require both insn 	s to be in pipeline ("in flig	ht") simultaneously
Compsci 220 / ECE 252 (Lebeck):		22


Data dependences in loc	
Intra-loop: within sar Inter loop: across its	
 Inter-loop: across iter Example: DAXPY (Double) 	
for (i=0;i<100;i++) Z[i]=A*X[i]+Y[i];	• RAW intra: $0 \rightarrow 1(\texttt{f2})$, $1 \rightarrow 3(\texttt{f4})$, $2 \rightarrow 3$ ($\texttt{f6}$), $3 \rightarrow 4(\texttt{f8})$, $5 \rightarrow 6(\texttt{r1})$, $6 \rightarrow 7(\texttt{r2})$
0: ldf f2,X(r1) 1: mulf f2,f0,f4	 RAW inter: 5→0(r1), 5→2(r1), 5→4 (r1), 5→5(r1) WAR intra: 0→5(r1), 2→5(r1), 4→5(r1)
2: ldf f6,Y(r1) 3: addf f4,f6,f8 4: stf f8,Z(r1)	• WAR inter: 1→0(f2), 3→1(f4), 3→2 (f6), 4→3(f8), 6→5(r1), 7→6(r2)
5: addi r1,8,r1 6: cmplti r1,800,r2 7: beq r2,Loop	 WAW intra: none WAW inter: 0→0(f2), 1→1(f4), 2→2 (f6), 3→3(f8), 6→6(r2)


Read-after-write (RAW)	
add r2,r3 → r1	
sub r 1,r4 → r2	
or r6,r3→r1	
> Problem: swap would mean sub uses wrong value for r	:1
True: value flows through this dependence	
 Using different output register for add doesn't help 	

> Load-use stall	iy, sta		gici	s ur	navoi	uab	le			
 Load value not re 	adv a	t he	ninnii	na o	fM-	+ cai	า/่า เเร	e M	X hvr	าสรร
 Use WX bypass 	aay u	c DC	9			cui				
	-	2	3	4	5	6	7	8	9	10
ld [r3+4] → r1	F	D	X	М	w	-hint		0	-	10
sub r1,r4⇒r2		F	D	d*	∤x	М	w			
Aside: with WX by	oassi	ng,	sta	ll lo	ogic	car	ı be	in	Do	r X
	1	2	3	4		6	7	8	9	10
						1 1	1	1		
ld [r3+4] ⇒ r1	F	D	X d*	М	w					

Compiler can schedule (move) insns to reduce stalls
	ng: eliminate back-to-back load-use pairs
Example code sequence: a	
MIPS Notation:	
 "ld r2,4(sp)" is "ld [sp 	0+4]→r2" "st r1, 0(sp)" is "st r1→[sp+0]"
What are some limitation	ns/requirements for this approach?
Before	After
ld r2,4(sp)	ld r2,4(sp)
ld r,3,8(sp)	ld r3,8(sp)
add 13,r2,r1 //sta	11ld r9, 16 (sp)
st r1,0(sp)	add r3,r2,r1 //no stall
ld r5,16(sp)	ld r6,20(sp)
ld r6,20(sp)	st r1 (sp)
sub r5; r6, r4 //sta	<pre>11 sub r5, r6, r4 //no stall</pre>
st r4,12(sp)	st r4,12(sp)

Large schedul	ing scope			
Independent i	nstruction to p	ut between load-use pa	irs	
+ Original exam	ple: large scope	e, two independent com	nputations	
 This example: 	small scope, o	ne computation		
<u>Before</u>		<u>After</u>		
<u>Before</u>		After		
ld r2,4(sp)		ld r2,4(sp)		
ld <mark>r</mark> 3,8(sp)		ld <mark>r3</mark> ,8(sp)		
add <mark>r3</mark> ,r2,r1	//stall	add r3 ,r2,r1	//stall	
st r1,0(sp)		st r1,0(sp)		
What are as		enges for compiler sche	duling?	

Enough registers	
> To hold additional "live" value	is
Example code contains 7 diffe	erent values (including sp)
> Before: max 3 values live at a	
	registers not enough \rightarrow WAR violations
Original	Wrong!
ld r2,4(sp)	$\frac{1}{1} \frac{1}{1} \frac{1}$
ld r1 ,8(sp)	ld r1,8(sp)
add r1, r2, r1 //stall	\rightarrow ld r1,16(sp)
st r1,0(sp)	add r1,r2,r1 //WAR
ld r2,16(sp)	ld r1,20(sp)
ld r1,20(sp)	> st r1,0(sp) //WAR
<pre>sub r2,r1,r1 //stall</pre>	sub r2,r1,r1
st r1,12(sp)	st r1,12(sp)

Alias analysis	
Ability to tell whether lo	ad/store reference same memory locations
 Determine if load/st 	tore can be rearranged
Example code: easy, all	loads/stores use same base register (sp)
New example: can complex can can complex can complex can can complex can can complex can	piler tell that r8 = sp?
Before	Wrong(?)
ld r2,4(sp)	ld r2,4(sp)
ld r3,8(sp)	ld r3,8(sp)
add r3,r2,r1 //	/stall ld r5,0(r8)
st r1,0(sp) 🔍	add r3,r2,r1
ld r5,0(r8)	ld r6,4(r8)
ld r6,4(r8)	st r1,0(sp)
sub r5,r6,r4 //	/stall sub r5,r6,r4
st r4,8(r8)	st r4,8(r8)

Write-after-write (WAW)	
add r2,r3,r1	
sub r1,r4,r2	
or r6,r3, <mark>r1</mark>	
Compiler effects	
 Scheduling problem: reordering would leave wrong value in r1 Later instruction reading r1 would get wrong value 	
 Artificial: no value flows through dependence Eliminate using different output register name for or 	
Pipeline effects	
Doesn't affect in-order pipeline with single-cycle operations	
 One reason for making ALU operations go through M stage 	
Can happen with multi-cycle operations (e.g., FP or cache misses)	

F				5	6	7	8	9	10
• • •		E/			E/				
	F						М	W	
:		F	D	E+	E+	w			
er inst	ructi	on (a	addf) at	write	back			
nce, ca	scad	ling \	N str	uctu	ral ha	azaro	ls		
er inst	ructi	on (a	livf	:) wri	iteba	ck			
loss									
stf C	ause	an e	excep	otion	(e.g.	, /0,	pag	e fau	ult)?
	nce, ca er inst loss	er instructi nce, cascac er instructi loss	er instruction (ance, cascading Ver instruction (allocation) of the second seco	r F D er instruction (addf nce, cascading W str er instruction (divf loss	F D E+ er instruction (add£) at nce, cascading W structu er instruction (div£) wrilloss	F D E+ E+ er instruction (addf) at write nce, cascading W structural har er instruction (divf) writeba loss	P D E+ E+ W er instruction (addf) at writeback nce, cascading W structural hazard er instruction (divf) writeback loss	F D E+ E+ W er instruction (add£) at writeback nce, cascading W structural hazards er instruction (div£) writeback loss	F D E+ E+ W er instruction (add£) at writeback nce, cascading W structural hazards er instruction (div£) writeback

Handling Inter	սբ	JLS	/ =	XC	ep		ns			
 How are interrupts/exce 								2		
Interrupt: external, e			- for			-friends				
Exception: internal, e		10.0	-			- E - E				
We care about restar	cable	e inte	errup	DTS (e	e.g. s	stf [bage	raun	C)	
	1	2	3	4	5	6	7	8	9	10
divf f0,f1⇒f2	F	D	E/	E/	E/	E/	E/	W		
stf f2→[r1]		F			d*			Μ	W	
addf f0,f1⇒f2			F	D	E+	E+	W			
VonNeumann says										
 "Insn execution show 	uld a	nne	ar s	eaue	entia	lan	1 ato	omic	."	
Insn X should co		1.1		1.1						bogin
+ Doesn't physicall						· · · · · · ·				
 But be ready to r	resto	ore t	o th	is st	ate a	at a	mon	nent	s no	tice
 Called precise stat 	e or	pre	cise	e int	erru	upts				

	1	2	3	4	5	6	7	8	9	10
divf f0,f1⇒f2	F	D								
stf f2 [r1]		F			d*			М	W	
addf f0,f1 → f2			F	D	E+	E+	w			
In this situation										
Make it appear as if di	vf	finish	ned a	ind s	tf.	addf	: hay	en't	start	ted
Allow divf to writeba	ck				· · ·					
Flush stf and addf	(so t	that's	s wh	at a i	flush	is fo	r)			
 But addf has alread 	ady v	vritte	en ba	ack						
 Keep an "undo" re 	giste	r file	? Co	mpli	cated	ł				
 Force in-order writ 	ebac	ks?	Slow							
- Other solutions? La	ater									
Invoke exception hand	ller									
> Restart stf										

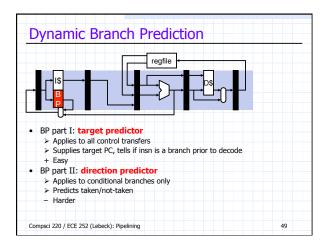
	1	2	3	4	5	6	7	8	9	10
divf f0,f1→f2	F	D	E/	E/	E/	E/	E/	W		
stf f2 → [r1]		F	D		d*				w	
divf f0,f4⇒f2			F	D	E/	E/	E/	E/	E/	W
 What about two simulta Example: stf page fau Interrupts must be har Handler for stf m Must defer interrupts u 	ult, a Idled Ust s Intil v	livf in p ee p write	/0 rogr rogr back	am o am a	order as if c	(st: livf	e firs hasi	n't sl		
In general: interrupts ar				-						
 Some processors (Alph 					t pre	cise i	nteg	er in	terru	lpts
Easier because fewer V										
Most floating-point integration	rrup	ts ar	e no					1		
 divf /0 → rescale 										

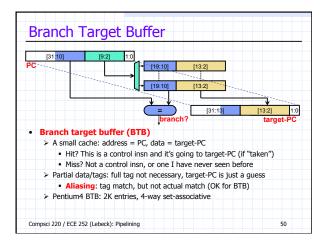
•	Write-after-read (WAR)
	add r2,r3,r1
	sub r5,r4, <mark>r2</mark>
	or r6,r3,r1
,	Compiler effects
	> Scheduling problem: reordering would mean add uses wrong value for r2
	Artificial: solve using different output register name for sub
,	Pipeline effects
	Can't happen in simple in-order pipeline
	Can happen with out-of-order execution

	ealt with register depender	COF
	exist through memory	
st r2 →[r1]	st r2 → [r1]	st r2 →[r1]
ld <mark>[r1]⇒</mark> r4	ld [r1] →r4	ld [r1]⇒r4
st r5 → [r1]	st r5 →[r1]	st r5 →[r1]
D		
Read-after-write (RAW)		Write-after-write (WAW)
But in an in-orde Memory read an Register read	er pipeline like ours, they d id write happen at the sam d happens three stages ear	o not become hazards e stage lier than register write
But in an in-orde Memory read an Register read	er pipeline like ours, they d Id write happen at the sam d happens three stages ear nory dependences more diff	o not become hazards e stage lier than register write ficult than register
But in an in-orde Memory read an Register read	er pipeline like ours, they d id write happen at the sam d happens three stages ear	o not become hazards e stage lier than register write ficult than register

Control hazards										
Must fetch post branch	h insr	ns be	efore	brar	nch o	outco	me i	s kn	own	
> Default: assume "not	-take	en" (at fe	tch,	can't	tell	it's a	bra	nch)	
Control hazards indica	ted v	vith (c* (c	r no	t at a	all)				
Taken branch penalty	is 2 d	cycle	s							
	1	2	3	4	-5	6	7	8	9	
addi r1,1⇒r3		D	Х	М	W					
bnez r3,targ		F	D c*	Х	M	w				
st r6 → [r7+4]			c*	c*	F	D	х	М	W	
Back of the envelope ca	alcula	atior	1							
> Branch: 20%, other	: 80%	6, 7	5% (of br	and	hes	are	take	en	
CPI _{BASE} = 1										
> CPI _{BASE+BRANCH} = 1 + 0).20*(0.75	*2 =	1.3						
- Branches cause 30°										

Fast bran	ch: resolves at D, not X
> Test mu	st be comparison to zero or equality, no time for ALU (RISC)
+ New tak	en branch penalty is 1
 Addition 	al comparison insns (e.g., cmplt, slt) for complex tests
 Must by 	pass into decode now, too
Delayed b	ranch: branch that takes effect one insn later
Schedule	e insns that are independent of branch into "branch delay slot"
Preferab	ly from before branch (always helps then)
But from	n after branch OK too
 As lo 	ong as no undoable effects (e.g., a store)
Upshot:	short-sighted feature (MIPS regrets it)
– Not	a big win in today's pipelines
- Com	plicates interrupt handling


 Execute before all parameters known with certainty 	Speculation	
Execute before all parameters known with certainty Correct speculation Avoid stall, improve performance Incorrect speculation (mis-speculation)	"Engagement in risky transa	actions on the chance of profit"
Correct speculation + Avoid stall, improve performance Incorrect speculation (mis-speculation)	Speculative execution	
+ Avoid stall, improve performance Incorrect speculation (mis-speculation)	> Execute before all parameter	ers known with certainty
Incorrect speculation (mis-speculation)	Correct speculation	
	+ Avoid stall, improve perform	nance
 Must abort/flush/squash incorrect instructions 	Incorrect speculation (m	is-speculation)
	 Must abort/flush/squash inc 	correct instructions
 Must undo incorrect changes (recover pre-speculation state) 	 Must undo incorrect change 	es (recover pre-speculation state)
The "game": [% _{correct} * gain] > [(1-% _{correct}) * penalty]	The "game": [% _{correct} *	gain] > [(1–% _{correct}) * penalty]


	control hazards with control speculation
Mechanics	vn parameter: are these the correct insns to execute next?
	branch target, start fetching at guessed position
	e branch to verify (check) guess
	rect speculation? keep going
	-speculation? Flush mis-speculated insns
Don't w	vrite registers or memory until prediction verified

Control Hazards: Control Specula • Speculation game for in-order 5 stage pipeline	
Gain = 2 cycles	
Penalty = 0 cycles	
 No penalty → mis-speculation no worse than stalling 	
% _{correct} = branch prediction	
 Static (compiler) ~85%, dynamic (hardware) >95% 	1
Not much better? Static has 3X mispredicts!	
Compsci 220 / ECE 252 (Lebeck): Pipelining	46

	1	2	3	4	5	6	7	8	9
Recovery: addi r1,1⇒r3	F	D	Х	М	W				
bnez r3,targ		F	D	х,	М	W			
-st 16-2 [17:4]			F	D \ F	-				
targ:add r4,r5⇒r4 targ:add r4,r5⇒r4				F	1-			 M	w
targ:add r4,r5 7 r4					5	U	^	IVI	vv
 Mis-speculation record Not too painful in an i 				do or	i wrc	ng gi	less		
 Not too painful in an i Branch resolves in X 	n-ord	er pip	eline			5.5			
 Not too painful in an i Branch resolves in X Younger insns (in F, E 	n-ord)) hav	er pip ven't c	eline hange	ed per	mane	ent sta	te		
 Not too painful in an i Branch resolves in X 	n-ord)) hav	er pip ven't c	eline hange	ed per	mane	ent sta	te	:)	
 Not too painful in an i Branch resolves in X Younger insns (in F, E 	n-ord)) hav	er pip ven't c	eline hange	ed per	mane	ent sta	te	;)	
 Not too painful in an i Branch resolves in X Younger insns (in F, E 	n-ord)) hav	er pip ven't c	eline hange	ed per	mane	ent sta	te	;)	
 Not too painful in an i Branch resolves in X Younger insns (in F, E 	n-ord)) hav	er pip ven't c	eline hange	ed per	mane	ent sta	te	•)	
 Not too painful in an i Branch resolves in X Younger insns (in F, E 	n-ord)) hav	er pip ven't c	eline hange	ed per	mane	ent sta	te)	

Correct: addi r1,1 ⇒r3 bnez r3, targ st rc⊕ [r7+4] F D X M W st rc⊕ [r7+4] F D X M W targ:add r4, r5⇒r4 F D X M W • Correct speculation > Great! Everything flows nicely, no stalls • But, we need to guess branch target correctly!			1	2	3	4	5	6	7	8	9
st r6→[r7+4] targ:add r4, r5→r4 • Correct speculation > Great! Everything flows nicely, no stalls	Correct:		F	1 - 1	Х	М					
targ:add r4,r5→r4 F D X M W • Correct speculation > Great! Everything flows nicely, no stalls				F				1 1 1			
Speculative Correct speculation Foreat! Everything flows nicely, no stalls					F	T 1			1		
Correct speculation Great! Everything flows nicely, no stalls	tar	g:add r4,r5 9 r4			eneci		U	X	IM	vV	
But, we need to guess branch target correctly!	> (Great! Everything flo	ows n	icely,	no sta	alls					
	• But,	we need to guess	s bra	nch t	arget	corre	ectly!				

Because control insn targets are stable
Direct means constant target, indirect means target in register
+ Direct conditional branches? Check
+ Direct calls? Check
+ Direct unconditional jumps? Check
+ Indirect conditional branches? Not that useful→not widely supported
Indirect calls? Two idioms
+ Dynamically linked functions (DLLs)? Check
+ Dynamically dispatched (virtual) functions? Pretty much check
Indirect unconditional jumps? Two idioms
 Switches? Not really, but these are rare
- Returns? Nope, but

Retur	n Address St	ack (RAS)	
PC			
	instruction	[next-PC
Return	addresses are easy to	predict without a E	ЗТВ
> Har	dware return address s	tack (RAS) tracks c	all sequence
	s push PC+4 onto RAS		
	diction for returns is RAS[
	now can you tell if an insr		ecoding it?
	A1: Add tags to make RA		
•	A2: (Better) attach pre-c		
	 Written after first tim 		
	 Two useful bits: retu 	rn?, conditional-bran	ich?
Compaci 220	ECE 252 (Lebeck): Pipelining		52

Direction predictor (DIRP)	
Map conditional-branch PC to taken/not-ta	afaan faan faan faan faan faan faan faa
 Seemingly innocuous, but quite difficult to 	
 Individual conditional branches often unbia 90%+ one way or the other considered 	

> PC indexes table	e of b							on t	/ Cui			
Essentially: brar	nch w	ill go	san	ne w	ay it	went	t last	: tim	e			
Problem: consid	er in	ner	loop) bra	nch	belo	w (*	= n	nis-pr	edic	tion))
// w]												
State/prediction	N*	Т	T	T*	N *	T	T	T*	N *	T		T*
	N* T	T T	T	T* N	N* T	T T	T T	N	N≁ T	T	T	N
State/prediction	T	Т	Ť	N	т	Ť	T Ioop		T	T	T	N
State/prediction Outcome	T n″ mis	T s-pre	T	N ions	T per ir	T		itera	T	T	T	N

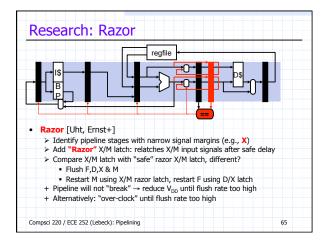
 Replace each s (0,1,2,3) = 	= (N,n	,t,T)										
 Force DIRP to State/prediction 	mis-p	redic	t twi	ice b	efore	e "ch	angi T	ng its	min t	nd"	т	T*
Outcome	т	т	Т	N	T	т.	Т	N	Т	т	T.	N

	(two-lev	- for the form						11					
Exploits o								orrel	ated				
Maintains				3 8		3 8							
 Bran 	ch history	regi	ister	(BH	IR)	rece	nt br	anch	out	come	s		
Simple we	orking exam	nple:	assu	me p	orogi	ram I	nas o	one b	ranc	h			
 BHT: 	one 1-bit D	IRP (entry										
 BHT+ 	2BHR: 4 1	-bit	DIRP	entr	ries								
State/prediction	BHR=NN	N*	Т	Т	т	Т	Т	Т	т	Т	Т	Т	Т
	BHR=NT	Ν	N*	Т	Т	Т	т	Т	Т	Т	т	Т	Т
"active pattern"	DIIK-NI										_		_
"active pattern"	BHR=TN	N	Ν	N	Ν	N*	Т	T	Т	т	T	Т	T
"active pattern"		N N	N N	N N*	N T *	N*	T N	Т N*	т т *	T N	T N	Т N*	· ·
'active pattern"		-											
"active pattern"		N	N	N	N	N*	ΙT	I T	Т	т	I T	I T	ŀ

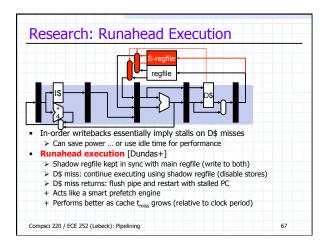
	ened? sn't long end n: BHT+ 3B												
State/prediction	BHR=NNN	N*	Т	Т	т	Т	Т	Т	Т	Т	Т	Т	Т
	BHR=NNT	Ν	N*	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
	BHR=NTN	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν	N	Ν	Ν
"active pattern"	BHR=NTT	Ν	N	N*	Т	Т	Т	т	Т	Т	Т	т	Т
	BHR=TNN	Ν	N	Ν	Ν	N	Ν	Ν	Ν	Ν	N	Ν	Ν
	BHR=TNT	Ν	N	Ν	Ν	N	N*	Т	Т	Т	Т	Т	Т
	BHR=TTN	N	N	Ν	Ν	N*	Т	Т	Т	т	Т	Т	Т
	BHR=TTT	N	N	Ν	Ν	N	Ν	Ν	Ν	Ν	N	Ν	Ν
Outcome		Т	Т	Т	Ν	Т	Т	Т	Ν	Т	Т	Т	Ν

• Design choice I: one global BHR or one per PC (local)?	
 Each one captures different kinds of patterns Global is better, captures local patterns for tight loop branches 	-
	5
Design choice II: how many history bits (BHR size)?	
Tricky one	
+ Longer BHRs are better for some apps, shorter better for othe	rs
 BHT utilization decreases w/ long BHRs 	
 Many history patterns are never seen 	
 Many branches are history independent (don't care) 	
 PC ^ BHR allows multiple PCs to dynamically share BHT 	
 BHR length < log₂(BHT size) 	
 Predictor takes longer to train 	
Typical length: 8–12	
Compsci 220 / ECE 252 (Lebeck): Pipelining	58

Attacks correlat					
	ed predictor	BHT utiliz	zation prol	olem	
Idea: combine t	wo predictor	s			
 Simple BH 	T predicts hi	story inde	ependent l	oranches	
 Correlated 	predictor	oredicts o	only branch	nes that r	need history
 Chooser as 	signs branch	nes to one	e predicto	or the o	ther
 Branches st 	art in simple	BHT, mo	ve mis-pre	ediction t	hreshold
 Correlated pred 	ictor can be	made sm	aller, hand	lles fewe	r branches
+ 90–95% accura	су				
PC	1				
·	3				se


Perceptron predicto	or [Jimenez]
Attacks BHR size pro	blem using machine learning approach
BHT replaced by tab	le of function coefficients F _i (signed)
Predict taken if Σ(BH)	IR _i *F _i)> threshold
+ Table size #PC* BHF	R * F (can use long BHR: ~60 bits)
 Equivalent correl 	ated predictor would be #PC*2 ^{BHR}
How does it learn? U	pdate F _i when branch is taken
 BHR_i == 1 ? F_i+ 	+ : F _i ;
 "don't care" F_i bi 	ts stay near 0, important F _i bits saturate
+ Hybrid BHT/perceptr	on accuracy: 95–98%
PC	F
	<u>Σ F,*BHR</u> t t t t t t t t t t t t t t t t t t t
	BHR

Same para	imeters	
Branch	: 20%, load: 20%, store: 10%, other: 50	1%
> 75% of	branches are taken	
 Dynamic b 	ranch prediction	
	es predicted with 95% accuracy + 0.20*0.05*2 = 1.02	


•	Base CPI is 1, but hazards increase it				
•	Nothing magical about a 5 stage pipeline				
	Pentium4 has 22 stage pipeline				
•	Increasing pipeline depth				
	+ Increases clock frequency (that's why companies do it)				
	 But decreases IPC 				
	> Branch mis-prediction penalty becomes longer				
	 More stages between fetch and whenever branch computes 				
	Non-bypassed data hazard stalls become longer				
	More stages between register read and write				
	At some point, CPI losses offset clock gains, guestion is when?				

•	Remember control-speculation game				
	[2 cycles * % _{correct}] - [0 cycles * (1-% _{correct})]				
	> No penalty \rightarrow mis-speculation no worse than stalling				
	This is a performance-only view				
	From a power standpoint, mis-speculation is worse than stalling				
-	Power control-speculation game				
	[0 nJ * % _{correct}] - [X nJ * (1-% _{correct})]				
	➢ No benefit → correct speculation no better than stalling				
	 Not exactly, increased execution time increases static power 				
	> How to balance the two?				

Spe	culation gating [Manne+]
Extend branch predictor to give prediction + confidence	
> 5	Speculate on high-confidence (mis-prediction unlikely) branches
> 9	Stall (save energy) on low-confidence branches
Con	fidence estimation
> ١	What kind of hardware circuit estimates confidence?
۶ł	Hard in absolute sense, but easy relative to given threshold
> (Counter-scheme similar to % _{miss} threshold for cache resizing
≻E	Example: assume 90% accuracy is high confidence
	 PC-indexed table of confidence-estimation counters
	 Correct prediction? table[PC]+=1 : table[PC]-=9;
	 Prediction for PC is confident if table[PC] > 0;

• F	Principles of pipelining	
	Effects of overhead and hazards	
	Pipeline diagrams	
• [Data hazards	
	Stalling and bypassing	
• (Control hazards	
	> Branch prediction	
• F	Power techniques	
	Dynamic power: speculation gating	
	Static and dynamic power: razor latches	

