
COMPSCI 530: Design and Analysis of Algorithms Nov 26, 2013

Lecture #25
Lecturer: Debmalya Panigrahi Scribe: Nisarg Raval

1 Overview

In this lecture we show how to solve online algorithms using linear programing (LP) and rounding mech-
anism. Specifically, we describe a method to solve online version of the “Set Cover” problem. Since, the
entire input is not known a priori, writing an LP for the problem itself is challenging. We present an LP
based fractional solution with (logm)OPT bounds on cost where OPT is the cost of the optimal solution.
We also give a rounding scheme to construct an integer solution which has at most (logn logm)OPT cost.

2 Online Set Cover

The offline set cover problem is defined as follows. Given a universe set U , a set system S= {(S,Cs) : S⊆U}
such that

⋃
S∈S S =U and Cs is the cost of set S, find a subset system S′ ⊆ S to minimize ∑s∈S′Cs such that⋃

S∈S′ S = U . In a special case where all costs Cs are 1 (unweighted set cover) the goal is to find minimum
number of subsets that cover all the elements in U .

The online set cover problem is similar to the offline version except instead of covering all the elements
of U we need to only cover elements which arrive online. Usually, the elements arrive one at a time and in
each iteration the solution is updated to cover the newly arrived element. But the catch here is that, once a
subset is included in the solution we can not remove it from the solution. In other words the solution should
satisfy the monotone property.

The LP for the set cover problem can be written as follows:

min ∑
S∈S

CsXs

s.t. ∑
S:e∈S

Xs ≥ 1 ∀e ∈U

Xs ≥ 0 ∀S ∈ S

Here, Xs is the variable corresponding to each set S ∈ S. Note that we can not directly use the above LP
in online version because we don’t know the entire input at once. More specifically, we don’t know what
elements need to be covered before hand. However, we can think of the stream of input as evolving LP. The
idea is to start with the basic LP and on every iteration, change the LP according to the new input. In case of
set cover this is equivalent of adding one constraint (corresponding to the new element) on every iteration.
In case of offline version, we can simply run LP solver and then perform rounding to get an integer solution.
However, in case of online version we can not simply run LP solver on every iteration because the resulting
solution may violate the monotone property described before. To solve the online set cover problem using
LP, we use greedy algorithm to get the fractional solution and apply rounding technique (similar to the
offline version) to get an integer solution.

Competitive Ratio. Before describing the algorithm we briefly talk about the competitive ratio of the
online set cover problem. Remember that the approximation factor for the offline set cover problem is logn.

#25-1

(a) Competitive Ratio Example. (b) Illustrating cost of Greedy Algorithm.

Figure 1: Example Illustration of cost of Online Set Cover Problem.

However, in case of online set cover problem the competitive ratio is polynomial in n (Ω(n)). This can be
shown using a simple example illustrated in Figure 1a. Consider a universe U = {e1,e2, . . .en} and a set
system S = {S1,S2, ...Sn,Sn+1} such that ∀i = 1→ n,Si = {ei} and Csi = 1. Also, Sn+1 =U and Csn+1 = 2.
In this case at each step the algorithm will choose the set Si for the new element ei since that is the set with
least cost. This leads to the cost of n. However, the optimal solution is Sn+1 which has cost of only 2.

2.1 Greedy Algorithm

We need to make sure that on every iteration we get fractional solution which should satisfy the new con-
straint and monotone property. Although the described algorithm is applicable in general case, for simplicity,
assume all sets are of cost 1. Hence, the cost of the solution is the total number of subsets in it. Initialize
each Xs by 1/m, where m is the number of subsets (|S|). In first iteration, the cost of the total solution
is ∑S∈S Xs = ∑S∈S(1/m) = 1, which is equal to the cost of optimal solution as optimal algorithm needs to
choose at least one subset. Hence, for any one input ALGO ≤ OPT , where ALGO and OPT are the costs
of greedy algorithm and optimal algorithm respectively. For any new element e, if its already covered do
nothing otherwise double the value of all subsets containing e until e is covered. Formally, these steps are
described below:

while e is not covered (i.e. ∑S:e∈S Xs < 1) do
Xs = 2Xs ∀S⊆ S : e ∈ S //double the value of each set containing e

end while

Lemma 1. In any iteration of the greedy algorithm, the cost (ALGO) increases by at most 1.

Proof. We only increase the value of Xs if ∑S:e∈S Xs < 1. Hence, the change in the cost in one iteration is
∑S:e∈S(Xnew

s −Xold
s) = ∑S:e∈S(2Xold

s −Xold
s) = ∑S:e∈S Xold

s < 1.

Theorem 2. The cost of a fractional solution of the greedy algorithm is at most (logm)OPT .

Proof. Since, in each iteration ALGO is increased by at most 1, we only need to count the number of
iterations taken by the greedy algorithm to compute ALGO. Consider a new element e which belongs to

#25-2

some subsets of S as shown in Figure 1b. The variables Xs corresponding to each of these subsets will be
doubled. In particular, the set Xse will also be doubled, where Xse is the variable corresponding to the subset
Se which in turn is the subset used by the optimal algorithm to cover e. Hence, the algorithm can not have an
iteration where no subset of OPT participate. Therefore, the question is how many iterations a subset S can
participate in? Since, we initialize each subset with 1/m and at each iteration (in which subset participates)
we double its value, a subset can participate in at most logm iterations because it can have value of at max
1. In worst case each subset in OPT participates in logm iterations. Hence, the total number of iterations is
at most (logm)OPT . In other words, ALGO≤ (logm)OPT .

2.2 Rounding

In this subsection we show how to construct an integer solution from the fractional solution using rounding
technique. In case of offline set cover we perform rounding simply by setting Xs = 1 with probability
X∗s (logn) and 0 otherwise [BSN09], where X∗s is the fractional optimal solution. However, we can not
apply the same rounding technique in online version because it doesn’t ensure the monotonicity of the
solution. For example, some Xs may rounded to 1 in one iteration and 0 in later iterations. In order to
ensure monotonicity, we need to ensure that once Xs is rounded to 1, in any subsequent iterations it must be
rounded to 1. This can be achieved by monotone rounding scheme with Pr[Xs = 1] = Xs(logn), where Xs

is the boolean variable indicating whether set Xs is picked in the solution or not. The bound on the integer
solution is (logn logm)OPT which can be proved as follows:

E[IntegerSolution] = E[∑
S∈S

Xs]

= ∑
S∈S

E[Xs] // by linearity of expectation

= ∑
S∈S

Xs logn

≤ (logn logm)OPT

Next, we show with what probability we should perform rounding in every iteration to achieve the
overall probability of Xs(logn). Let X−e

s and X+e
s be the respective values of S before and after e arrives.

Suppose for element e, Xs increases by ∆Xs, then there are two possible cases.

1. If set S is already in the solution then X−e
s = 1, we don’t have any choice but to pick S.

2. Otherwise, X−e
s = 0, in which case we pick S with probability, Pr[X+e

s = 1] = ∆Xs logn
1−Xs logn .

This procedure ensures that Pr[X−e
s = 1] = Xs logn (before e arrives) and Pr[X+e

s = 1] = (Xs+∆Xs) logn
(after e arrives).

Pr[X+e
s = 1] = Pr[X+e

s = 1/X−e
s = 1]Pr[X−e

s = 1]+Pr[X+e
s = 1/X−e

s = 0]Pr[X−e
s = 0]

= Xs logn+
∆Xs logn

1−Xs logn
(1−Xs logn)

= (Xs +∆Xs) logn

#25-3

Since, Pr[Xs = 1] = Xs logn, we can show that all elements are covered in integer solution with high
probability using the similar analysis performed in an offline case. The given algorithm is a Monte Carlo
algorithm which can be easily converted into Las Vegas algorithm. The idea is at each step, look at the
elements which are not covered and cover them using greedy approach (select the subset which cover most
uncovered elements with minimum cost).

3 Summary

We introduced online set cover problem and gave an LP based technique to find fractional solution. We
proved (logm)OPT bound on cost of the fractional solution. We also gave monotone rounding scheme to
find an integer solution having cost of at most (logn logm)OPT . It is possible to de-randomized the given
algorithm to find a deterministic algorithm for online set cover problem [BSN09]. The method describe
in this lecture is more general and can be applied to many online problems like Stiner Forest, Metric/Non-
metric Facility Location, Weighted Paging etc.

References

[BSN09] Niv Buchbinder and Joseph (Seffi) Naor. The design of competitive online algorithms via a primal:
Dual approach. Found. Trends Theor. Comput. Sci., 3:93–263, February 2009.

#25-4

