SIAM J. COMPUT. © 1985 Society for Industrial and Applied Mathematics
Vol. 14, No. 2, May 1985 001

PRIORITY SEARCH TREES*

EDWARD M. McCREIGHTY

Abstract. Let D be a dynamic set of ordered pairs [x, y] over the set 0, 1, - - -, k—1 of integers. Consider
the following operations applied to D:

(1) Insert (delete) a pair [x, y] into (from) D.

(2) Given test integers x0, x1, and y1, among all pairs [x, y] in D such that xX0=x=x1 and y=yl,

find a pair whose x is minimal (or maximal).

(3) Given test integers x0 and x1, among all pairs [x, y] in D such that x0 = x = x1, find a pair whose

y is minimal.

(4) Given testintegers x0, x1, and y1, enumerate those pairs [x, y]in Dsuchthat x0=x=xland y=yl.

Using a new data structure that we call a priority search tree, of which two variants are introduced,
operations (1), (2), and (3) can be implemented in O(log n) time, where n is the cardinality of D. Operation
(4) is performed in at most O(log n+s) time, where s is the number of pairs enumerated. The priority
search tree occupies O(n) space.

Priority seach tree algorithms can be used effectively as subroutines in diverse applications. With them
one can answer questions of intersection or containment in a dynamic set of linear intervals. They can be
used in combination with a well-known plane-sweep technique, to implement off-line algorithms for
enumerating all intersecting pairs of rectangles. Priority search trees can also be used to implement
best-/first-fit storage allocation.

Key words. computational geometry, search trees, priority queues, intersection, intervals, rectangles,
storage allocation, concrete complexity

CR categories. 5.25, 3.74, 5.39

1. Introduction. Efficient multi-dimensional searching is one of the persistent
puzzles of computer science. Many lovely one-dimensional search structures with linear
space requirements and guaranteed logarithmic-time maintenance and search
algorithms have been discovered. But multi-dimensional structures with similar attrac-
tive properties continue to elude discovery.

We present here a new data structure, called a priority search tree, for representing
a dynamic set D of ordered pairs [x, y] over the set 0,1, - - -, k—1 of integers, and a
set of algorithms that operate on the priority search tree to implement the following
operations:

InsertPair (x,y): Insert a pair [x, y] into D.

DeletePair (x,y): Delete a pair [x, y] from D.

MinXInRectangle (x0, x1,y1): Given test integers x0, x1, and y1, among all pairs

[x, y]in D such that x0=x=x1 and y = yl, find a pair whose x is minimal.
MaxXInRectangle (x0, x1,y1): Given test integers x0, x1, and y1, among all pairs
[x, y]in D such that x0=x=x1 and y = yl, find a pair whose x is maximal.
MinYInXRange (x0, x1): Given test integers x0 and x1, among all pairs [x, y] in
D such that x0=x=x1, find a pair whose y is minimal.

EnumerateRectangle (x0, x1,y1): Given test integers x0, x1, and yl, enumerate

those pairs [x, y] in D such that x0=x=x1 and y=yl.

This searching might fairly be described as 1.5-dimensional. The data has two
independent dimensions, but the priority search tree does not allow equally powerful
searching operations on both. There is a major dimension (x) permitting arbitrary
range queries, and a minor one (y) permitting only enumeration in increasing order.

* Received by the editors July 14, 1980, and in final revised form April 26, 1983.
T Xerox Corporation, Palo Alto Research Center, Palo Alto, California 94304.

257



258 EDWARD M. McCREIGHT

All the search rectangles have only three sides free; the fourth side is anchored at y0 = 0.
In § 2 we present the simple radix priority search tree, and examine some of its

properties. In § 3 we elaborate this to the balanced priority search tree. In § 4 we

discuss a few of the applications to which these priority search trees can be put.

2. Radix priority search trees. First off, let us simplify the problem somewhat. In
the following exposition we assume that the set D of pairs contains no duplicate x
values. A restriction like this might or might not occur naturally in a real application.
If not, we can work with a derived set D,. consisting of a pair [F(x, y), y] for every
pair [x, y] in D. The function F is an invertible encoding function that maps pairs of
integers into single integers with the property that differences in x are more significant
than differences in y. For example, we might use the function F(x, y) =j*x+ y, which
maps pairs of integers in the domain 0. . j — 1 to single integers in the range 0. . j>*— 1 =
k — 1. Other ways of implementing such a function F are left to the reader’s imagination.
If [x, y] pairs are unduplicated in the original problem, then x,. values are unduplicated
in the derived problem. (Going even further, we could accommodate duplicated [x, y]
pairs in the original problem by representing them as unduplicated pairs with associated
counts.)

The simple idea that underlies priority search trees is most easily seen from a
diagram. Suppose that you wanted to represent the set of pairs in Fig. 1 so that
EnumerateRectangle could be executed efficiently on this representation. One good
way to do this is to select the pair [x*, y*] with minimum y, write it at the root of a
binary data structure, divide the region in two with a line of constant x, and recursively
represent the remaining points in the two subregions in the two subtrees of the root
in the same manner.

If one divides the region along the line x = x*, then the resulting data structure
is the Cartesian tree of Vuillemin [13]. This structure allows very good performance
in the average case, but its performance in the worst case is no better than a linear

k
* * .
*
*
*
*
*
*
* * *
* *
*
y
- *
* *
*
*
*
*
*
* - * * *
*
*
0
0 x___e k

[x*,y*]
FiG. 1



PRIORITY SEARCH TREES 259

list. For example, the set of pairs with x = y forces the data structure to degenerate to
a linear list.

Fortunately there is no compelling reason to divide the region along the line
x=x*. We define a radix priority search tree such that at each recursive level the
previous level’s x-interval is cut exactly in half (geographically). This is called a radix
bisection, and it has two important consequences.

The first is that after at most Ig k levels of bisection in x, we encounter a stripe
in y that is one unit wide in x. By our nonduplication assumption, there can be at
most one pair in D within this stripe. Therefore, even though a radix priority search
tree might contain k pairs, it is at most 1g k levels deep.

The other important consequence of radix bisection is that a node in a given
position in the radix search tree represents a fixed rectangle in x-y space. The only
way a pair enters or leaves one of these fixed rectangles is through an updating operation
involving that pair. Therefore no lateral data motion is ever required during updating
operations; an updating operation only moves down a single spine in the tree. This
fact enables a Ig k time bound on updating operations.

2.1. Data structure. We can represent a radix priority search tree in Pascal as
follows:

CONST
k =30000;
(*Comfortable for a 16-bit 2’s complement machine*)
FirstKey =0;
LastKey=k—1;
FirstNonKey = LastKey +1;
TYPE
KeyRange = FirstKey . . LastKey;
KeyBound = FirstKey . . FirstNonKey;
Pair=RECORD x, y: KeyRange END;
RPSTPtr =1RPST;
RPST=RECORD
p: Pair;
left, right: RPSTPtr
END;

A radix priority search tree is characterized by a fidelity condition and two data
structural invariants. The fidelity condition asserts that if the tree is representing a set
D of pairs, then each pair of D will appear in the p field of exactly one node (or
RPST record) of the tree. Thus a tree representing a set of n pairs occupies O(n)
words of storage, where each word is O(log k) bits long. In conventional algorithm-
analytic terms, a radix priority search tree is a linear-space data structure.

The first invariant is a priority queue invariant on y-values. It asserts that for any
node t in a radix priority search tree, if t.left is not NIL then t.p.y S t.left}.p.y, and if
t.right is not NIL then t.p.yS tright].p.y. This first invariant constrains only direct
ancestor-descendant relations; it does not constrain sibling relations at all.

The second invariant is a radix search tree invariant on x-values. It asserts that
associated with each node t in a radix priority search tree is an x-interval [lower . . upper)
(this notation denotes all integers between lower and upper, including lower and
excluding upper) within which t.p.x lies. The x-interval associated with the root of
the radix search tree is the interval KeyBound. For any node t such that t.left is not



260 EDWARD M. McCREIGHT

NIL, the x-interval associated with the node t.left} is [lower . . floor((lower+upper)/2)).
For any node t such that t.right is not NIL, the x-interval associated with the node
t.right? is [floor((lower+upper)/2). . upper).

2.2. Algorithms. The complete radix search tree algorithms, represented in Pascal,
are presented in Appendix A, and the reader is encouraged to read the following in
parallel with Appendix A.

In all of these algorithms, two preconditions are assumed true, and their truth is
maintained in recursive calls. The first precondition is that the interval
[lowerX .. upperX) is nonempty; that is, that lowerX <upperX. To maintain the truth
of this first precondition in recursive calls, the algorithms depend upon our assumption
that no two pairs have the same x-value. The second precondition is that whenever a
procedure takes an [x0..x1] argument range as a parameter, the procedure is only
called if the interval [x0..x1] shares at least one integer in common with the interval
[lowerX . . upperX).

First consider the InsertPair procedure. To insert a new pair, we begin at the root
of the priority search tree. First we discover whether the new pair ‘“‘beats” the pair
already sitting at the root, in the sense that its y-value is smaller. If not, then the new
pair is inserted recursively into either the left or right subtree, determined by its x-value.
Otherwise, the new pair belongs at the root, so the pair that originally lay at the root
is saved, the new pair is put there instead, and the saved pair is inserted recursively
into the subtree determined by its x-value.

DeletePair operates in two distinct phases. The first phase locates the pair to be
deleted and it operates as a search in an ordered search tree. Once the pair to be
deleted has been located its deletion leaves a hole, which is filled by a priority queue
tree selection (or a “knock-out tournament’’) phase [1], in which a pair of brothers
compete for the vacated spot formerly occupied by their father, and then the sons of
the victor compete for his former spot, and so on. The second phase completes when
the vacant spot has fewer than two sons.

Consider MinXInRectangle applied to a subtree rooted at node t. If t.p.y lies above
the top of the constraint rectangle, then because a priority search tree is a priority
queue in y, no pair in the subtree rooted at t lies within the constraint rectangle.
Otherwise, the solution might be found in the left subtree. If no pair in the left subtree
lies within the constraint rectangle, then (and only then) the solution might be found
in the right subtree. This is because every constrained pair in the left subtree is better
than any constrained pair in the right subtree. Finally, if t.p lies within the constraint
rectangle, then it might or might not be the correct solution, depending on whether it
is better than the best constrained pair found in a subtree. MaxXInRectangle is entirely
symmetric in x.

Next consider MinYInXRange applied to a subtree rooted at node t. If t.p lies
within the constraint x-interval, then because a priority search tree is a priority queue
in y, t.p is the correct solution. Otherwise, the solution, if it exists, is the better of the
solutions of the two subtrees. The tests of middleX against x0 and x1 simply guarantee
that subtrees that are certain to be fruitless are not explored. These tests also maintain
the truth of the second precondition in recursive calls.

Finally, EnumerateRectangle is a depth-first enumeration that calls the function
Report whenever a pair is found within the constraint rectangle. Report returns TRUE
if the enumeration should continue, and FALSE if it should terminate.

Each of these procedures is called at the top level with t] being the root of a radix
priority search tree, and with lower being FirstKey and upper being FirstNonKey.



PRIORITY SEARCH TREES 261

2.3. Execution time analysis. The logarithmic time bounds can be seen from the
recursive structure of the algorithms. Each recursive level of InsertPair is called on a
node with a [lower . . upper) interval, and makes at most one recursive call on InsertPair,
handing it a son node with a [lower . . upper) interval at most half as large. The recursion
must stop before the size of this [lower .. upper) interval shrinks to zero. This implies
a bound of Ig k on the depth of recursion and the number of nodes visited, and the
same order found on running time. An identical analysis applies to DeletePair.

The analyses of MinXInRectangle (and, symmetrically, MaxXInRectangle),
MinYInXRange, and EnumerateRectangle are more complicated because each some-
times calls itself recursively on both sons of a tree node. How many nodes can these
procedures visit? We begin to answer this question by classifying tree nodes according
to how their [lower..upper) intervals, denoted by (), compared with the interval
[x0..x1], denoted by {}. There are six such classes:

1O 20 {30, 3:{D, 4 (DL 5 (), and 6: {O}.

Neither MinXInRectangle nor MinYInXRange ever visits nodes in classes 1 or 2;
this is prevented by the second precondition. The second data structure invariant
guarantees at most Ig k nodes in each of classes 3, 4, and 5, so every one of these
nodes could be visited without violating a logarithmic time bound. Finally, there can
be a very large number of nodes in class 6, but these nodes can be grouped into
maximal subtrees that are sons of nodes in classes 4 or 5, at most one such son each,
so there are at most 2 1g k of these maximal subtrees. Within each of these class-6
subtrees, any t.p.x lies within the interval [x0 . . x1], so MinYInXRange will be prevented
by its second IF statement from exploring beyond the roots of these maximal subtrees.
This shows a time bound for MinYInXRange that is logarithmic in k.

An identical argument applies to EnumerateRectangle on all node classes except
6. In each of the class-6 maximal subtrees, beyond that subtree’s root level
EnumerateRectangle can visit a node only if the pair in the node’s father was Report’ed.
It follows that if EnumerateRectangle in fact enumerates s pairs, it runs in a time bound
of lg k+s. This is true whether or not the enumeration is terminated by the Report
function.

The operation of MinXInRectangle is more subtle, because MinXInRectangle
might find its answer deep in a subtree of class-6 nodes. The key observation is
that once a single recursive instance of MinXInRectangle succeeds (in the sense that
it returns a valid CondPair), there will be no further recursive calls of MinXInRectangle,
and all currently active recursive invocations (of which there can be at most 1g k, the
length of the longest path in the tree) will succeed. In other words, a top-level call to
MinXInRectangle will generate some number of recursive invocations applied to various
nodes of the tree that will fail, plus at most lg k invocations applied to other nodes
that will succeed. Now how many recursive invocations might fail? We observe that
whenever MinXInRectangle will fail when applied to a class-6 node, then it will fail
on its second IF statement, in constant time and without making any further recursive
calls. Thus a loose count concludes that MinXInRectangle can encounter at most 3 1g k
nodes of classes 3, 4, and 5, and at most lg k successful nodes, and therefore at most
4 1g k other (failed) class-6 nodes. This confirms a time bound for MinYInXRange that
is logarithmic in k. Closer reasoning tightens the constants considerably.

I have tried to code the procedures in Appendix A for clarity. There are several
straightforward program transformations that would improve execution time by sig-
nificant constant factors. The most important of these replace recursion with iteration
and division by 2 with a binary shift.



262 EDWARD M. McCREIGHT

Another important optimization reduces the number of unary (nonbinary) nodes
within the tree in many applications. One way of thinking about the algorithms in this
section is that a search for x is steered left or right through the tree by the sequence
of bits in the binary representation of x, one bit per left/right decision. The definition
of RPST can be augmented with a bit count field to allow a single left/right decision
to consume several bits of the binary representation of x, thereby eliminating unary
nodes for the intermediate bits. Depending on the application, this optimization can
result in large reductions of average path length, with attendant improvements in speed.

3. Balanced priority search trees. Careful consideration of the literature on search
structures suggests that when a radix structure permits certain opeations to be per-
formed in certain asymptotic time bounds, there almost always exists a parallel balanced
comparative structure (that is, a structure within which order may be inferred only by
comparing with keys that are present in the structure) that permits the same operations
to be performed in the same asymptotic time bounds. It would be a surprise and a
disappointment if this observation did not also hold true for priority search trees.

Fortunately, it does hold true. The structure of a balanced priority search tree
node can be expressed in Pascal as follows:

TYPE

BPSTPtr=1BPST;

BPST=RECORD
p; q: Pair;
p, q: Pair;
validP, duplQ: BOOLEAN;
left, right: BPSTPtr;
balance: Balancelnfo (*appropriate to the

underlying tree form chosen®)

END;

A balanced priority search tree is characterized by a fidelity condition and four
data structural invariants. The fidelity condition asserts that if the tree is representing
a set D of pairs, then each pair of D will appear in the q field of exactly one node of
the tree. Thus a balanced priority search tree is also a linear-space data structure.

In a BPST node, unlike a RPST node, two pairs can be recorded: the pair q is
chosen for its near-median x-value, while the pair p is chosen for its minimal y-value.
Two pairs are necessary because, as we saw in § 2, for some sets of pairs it is impossible
to satisfy both criteria with the same pair. Any pair [x, y] in D appears as the q field
of exactly one node t, and may also appear as the p field of at most one ancestor node
of t.

The first structural invariant is a standard search tree invariant on q.x. It asserts
that with each node t in a balanced priority search tree is associated a search key
interval [x0..x1) containing t.q.x, and also containing t.p.x'if t.validP is true. The
x-interval associated with the root of the search tree is KeyBound. For any node t, if
t.left is not NIL, then the x-interval associated with the node t.left} is [x0..t.q.x).
Similarly, if t.right is not NIL, then the x-interval associated with the node t.right? is
[t.q.x .. x1).

The second structural invariant is a priority queue invariant on p.y. Let t be any
node in a balanced priority search tree, and let a be a proper ancestor of t, and d a
proper descendant of t. If {a.p}={d.q} then t.validP is FALSE. Otherwise t.validP is
TRUE, and t.p is a pair chosen from {d.q}-{a.p} so that t.p.y is minimal. In other words,



PRIORITY SEARCH TREES 263

t.p. is a pair with minimal y that appears as the q field of one of t’s descendants and
does not appear as the p field of any of t’s ancestors. If no such pair exists, t.validP
is FALSE. It is easy to show that if validP is FALSE at t, it is FALSE at all of t’s
descendants as well. Conversely, if validP is TRUE at t, it is TRUE at all of t’s ancestors
as well.

The third structural invariant specifies the duplQ field. It asserts that the field
t.duplQ is TRUE if and only if there is some proper ancestor node a of t such that
a.validP = TRUE and a.p =t.q. This field allows our algorithms easily to avoid duplicate
enumeration of pairs.

The fourth and final structural invariant is a balance invariant inherited from
whatever underlying form of balanced tree is chosen. This invariant is usually a relation
between weights or path lengths in the left and right subtrees of a node, or on the
sequence of ‘““colors” on arcs leading to the node.

The operation necessary for maintaining balance in all known forms of balanced
comparative tree is some form of “‘rotation.” [1, p. 454] This is a way of moving some
“weight” from the “heavier” subtree of a node to the “lighter” one, thereby preserving
the balance invariant that guarantees a maximal path length at most logarithmic in
the number of nodes. The BalanceInfo field in the type of definition allows determination
of when and where to do these rotations.

Figure 2 shows the standard picture of a single rotation. Lower-case letters indicate
points along the x-value line, and also tree nodes whose q.x fields contain those points.
Upper-case letters indicate intervals on this line, and also subtrees containing nodes
whose p.x and q.x fields lie within those intervals. All intervals are assumed to include
their lower endpoint, and exclude their upper one.

During the priority search tree rotation, the q fields remain unchanged, just as
they would in an ordinary balanced tree rotation. The interesting question is, what
happens to the p fields? First of all, it is clear that node ¢ can use node e’s original p
field, because it represents the “best” pair in the [a. . g) interval that is not represented
higher in the tree. Now, what happens to node ¢’s original p field, and where does the

N AN

O EN O

o
o
m

FIG. 2



264 EDWARD M. McCREIGHT

new p field for node e come from? As luck might have it, ¢’s original p field might lie
in the interval D, and if so it would be a candidate for e’s new p field. But in the
general case we need to dispose of ¢’s old p field in one of ¢’s old subtrees, and to
extract a new p field for node e from one of its new subtrees.

Appendix B contains Pascal procedures for doing just that, along with skeleton
procedures for the balanced forms of InsertPair and DeletePair that manipulate the
P, q, validP and duplQ fields correctly but ignore re-balancing. The balanced forms of
the other algorithms are left as exercises for the interested reader.

The DisposeP and ExtractP procedures are each recursive down at most one path
in the tree, so their execution time is at most linear in the length of the longest path
in the tree. In a balanced tree, this longest path length is at most logarithmic in the
number of nodes in the tree. This means that in a balanced priority search tree
BalancedInsertPair and BalancedDeletePair each run in logarithmic time, except for
rotations, and that at most logarithmic extra time is needed for a single rotation.

To attain an overall logarithmic time bound, the number of rotations per updating
operation must be bounded by a constant. The usual families of balanced tree, such
as AVL [1, pp. 451-458], weight-balanced [1, p. 468], and B-tree [1, pp.471-479], do
not guarantee such a bound. Fortunately there are at least two families that do guarantee
at most a constant (in fact, three) rotations per updating operation: 2-3-4 trees [14],
[15], [16], and the half-balanced binary trees of Olivie [2].

4. Applications. There are many real computer applications involving a large
number of data items where the size of the computer to be used mandates a linear-space
data structure. All of the applications below require space only linear in the number
of data items. In several cases algorithms are known with smaller asymptotic time
bounds (generally by a factor of log n) but larger space requirements (generally by
the same factor) [10].

In all of the two-dimensional applications below, line segments are taken to be
parallel to the x- or y-axis. In my own applications this restriction is not a serious
one. But for others it may be, and it is not known in general how essential this restriction
is for the existence of fast algorithms.

4.1. On-line intersections in a dynamic set of linear intervals. We can use a priority
search tree to represent a dynamic set of linear intervals, letting the x-value of the pair
represent the upper endpoint of an interval, and letting its y-value represent the lower
endpoint. To enumerate all intervals that share at least one point with a test interval
[u..v], we use the EnumerateRectangle algorithm to enumerate all pairs whose x-value
lies in the interval [u .. LastKey] and whose y-value lies in the interval [FirstKey .. v].
If the set contains n intervals, then the structure to represent it requires O(n) space,
a new interval can be added or an old one deleted in O(log n) time, and all s intervals
in the set that intersect a test interval can be enumerated in O(log n+ s) time. Results
almost as good as this have been discovered previously by McCreight [3] and Guibas
and Saxe [4], and independently by Edelsbrunner [5], [6]. The improvement over [3]
and [5] is that here the parameter k can be ignored because balanced priority search
trees are used. The improvement over [4] and [6] is that here the time bound applies
to each operation individually, rather than to an average taken over a sequence of
operations.

4.2. On-line containments in a dynamic set of linear intervals. With exactly the
same data structure we can enumerate all intervals that completely contain a test
interval [u . . v] by using the EnumerateRectangle algorithm to enumerate all pairs whose



PRIORITY SEARCH TREES 265

x-value lies in the interval [v.. LastKey] and whose y-value lies in the interval [First-
Key..u]. If the set contains n intervals, then all s intervals in the set that contain a
test interval can be enumerated in O(log n + s) time. This is thought to be a new insult.

4.3. On-line visibility in a dynamic set of semi-infinite line segments. Suppose one
has a dynamic set of semi-infinite line segments beginning at points [x, y] and extending
upward in y. From a given point [x’, y'], which of these line segments would be visible
along a line of increasing x? To solve this problem one can represent the endpoints
of the semi-infinite lines as [x, y] pairs in a priority search tree. One could either think
of the line segments as being translucent or opaque. In the former case, the solution
is all pairs in the rectangle bounded on the left by x = x’ and above by y = y’, which
can be enumerated by EnumerateRectangle in O(log n + s) time. In the latter case, the
solution is the single pair within that rectangle whose x is minimal, which can be
produced by MinXInRectangle in O(log n) time.

4.4. On-line visibility in a dynamic set of line segments. Relaxing the restriction in
the previous problem that the line segments be semi-infinite gives the problem an
additional degree of freedom. To deal with this extra degree of freedom we adapt a
previous technique [3], [S]that recursively bisects the y-space, dividing the line segments
at each level into three classes: segments that lie entirely above the bisector, segments
that lie entirely below it, and segments that are cut by it. Segments that are not cut by
the bisector are represented in deeper recursive levels. Segments that are cut by the
bisector are represented in two priority search trees: one representing the pieces of
the cut segments below the bisector, and one representing those above. In each of
these two priority search trees the line segments are now semi-infinite, because they
extend to the limit of the (reduced) y space. Therefore the solution from § 4.3 carries
over for each recursive level, and there are log k such levels, so the translucent (opaque)
problem can be solved in O(log n log k(+s)) time. This is also thought to be a new
result.

4.5. On-line point containment in a dynamic set of rectangles. We apply recursive
bisection one more time, this time in x. For those rectangles cut by the bisector, we
now consider their left and right bisected pieces. These are symmetric, so we describe
only how to deal with the right-hand pieces. Each of these rectangular pieces is
completely described by the line segment of constant x that is its right-hand side,
because its left-hand side is the bisector. The set of these right-hand sides can be
handled as in § 4.4 above. A point is in one of these rectangular pieces whenever the
right-hand side of the piece is visible along a line of increasing x from the point.
Therefore the solution is simply log k iterations of the solution of § 4.4 above, and
one can enumerate the set of all rectangles in a dynamic set of rectangles that contain
a test point in O(log n log® k+s) time, a further new result. By now the reader can
see how to extend this indefinitely, so we shall next consider a different class of
applications.

4.6. Off-line intersections among a set of rectangles. We can enumerate all intersect-
ing pairs among a set of axis-aligned rectangles (rectangles with sides parallel to the
axes) by using the plane sweep technique first proposed by Shamos and Hoey [7]. This
technique simulates the motion of a horizontal line across a plane from bottom to top,
and considers the sequence of cross-sectional slices induced by this line.

For aligned rectangles a cross-sectional slice is a set of horizontal intervals. As
the sweep line moves upward onto a new rectangle, that rectangle’s horizontal interval
is added to the set. As the sweep line moves upward off a rectangle, that rectangle’s



266 EDWARD M. McCREIGHT

horizontal interval is removed from the set. Every time a new horizontal interval is
added to the set, an enumeration is made of all other intervals in the set that touch
the new interval.

We now analyze the performance of the rectangle intersection algorithm somewhat
more carefully. The sweep technique requires that the rectangles be sorted by their
bottom edges, and that their top edges be maintained in a priority queue. For n
rectangles this takes O(n) space and O(n log n) time. The priority search tree operations
can be done in O(n) space and O(log n+s) time apiece. Each rectangle causes one
InsertPair, one DeletePair, and one EnumerateRectangle operation. Moreover each
rectangle intersection is discovered by exactly one EnumerateRectangle operation, and
therefore contributes to the s of that operation. Thus the overall time performance is
O(n log n+s). This performance, which has been achieved before with more complex
data structures [5], [10], is within a constant factor of the best possible worst-case
performance.

An application like circuit extraction from IC masks might involve rectangles of
several colors, and be concerned only with intersections between rectangles of different
colors. For this purpose one could have a different priority search tree for each color.
As the sweep line passes the bottom edge of a red rectangle, for example, the correspond-
ing red horizontal interval would be inserted into the red priority search tree, while
the same interval would be used in a EnumerateRectangle operation on every nonred
priority search tree. Now arbitrary intersection patterns of red with red rectangles do
not increase the time beyond O(nlogn). The s term counts only the number of
inter-color intersections.

4.7. Memory allocation. Many computer operating systems satisfy dynamic
requests for memory according to a first-fit (use the free block of adequate size at the
smallest address) or a best-fit (use the smallest free block of adequate size) policy.
One might imagine that a synthesis of these two policies could perform better than
either one separately, but at first glance it is not apparent how to organize the free
blocks into a single space-efficient structure that will allow the time-efficient
implementation of either policy.

Now consider a priority search tree (of either kind, but one would probably want
to use the radix kind), where the x dimension is an encoding of [free block length,
free block address] for uniqueness (see § 2) and the y dimension is the free block
address. Best-fit can be implemented using only the search tree part of the radix search
tree in the obvious way. A first-fit implementation uses MinYInXRange on an x range
of [neededBlockSize . . largestPossibleBlockSize]. Each of these operations, as well as
insertion or removal of free blocks in the structure requires at most logarithmic time.
The extra space requirements are minimal: a radix priority search tree for this purpose
requires that each free block contain two pointers and a field to hold the length of the
free block.

A result similar to this is attributed to McCreight in [2], and that earlier data
structure bears a striking resemblance to a priority search tree. The difference between
them is that in the earlier structure, the pair whose y-value is minimal in a subtree not
only appears at the root of the subtree, but might also be repeated on a spine all the
way down to a leaf of the subtree. In a priority search tree, as in a proper priority
queue, pairs are not repeated. The effect of this is that the earlier structure and the
priority search tree perform equally well (within constant factors) for all operations
except EnumerateRectangle, but the O(long n+ s) time bound for EnumerateRectangle
cannot be attained with the earlier structure. This is because in the earlier structure



PRIORITY SEARCH TREES 267

enumerations can encounter the same pairs over and over again, often enough to ruin
linearity in s.

5. Open questions. The question that led me from tile trees [3] to priority search
trees remains unanswered. I still do not know whether it is possible, for an arbitrary
set of n aligned rectangles, to enumerate all s pairs that totally contain one another
in linear space and time O(nlog n+s). The methods in this paper allow one to
determine containment on three edges, but alas, three edges do not a rectangle make.

Priority search trees are one small step closer to the ultimate goal of general
two-dimensional range searching in linear space and logarithmic worst-case time. Is
that ultimate goal attainable? If not, or if we cannot discover how, are there further
small but useful steps?

Priority search trees are an interesting case of two data structures (a search tree
and a priority queue) in symbiosis, defined as ““the living together of two dissimilar
organisms, especially when this association is mutually beneficial.” Are there other
pairs of data structures that also benefit from symbiosis?

Acknowledgments. The ideas leading to this paper have developed over several
years, and I have many people to thank. I especially thank Jon Bentley for pointing
out the gaping hole in my original attempt to solve this problem, and Howard Sturgis
for pointing out that within the rococo walls of one of my intermediate formulations
lay the elegant machinery of § 2. Jan van Leeuwen first made me aware of Olivie’s
balanced trees with guaranteed constant rotations per update, thereby saving the reader
a very tortuous and otherwise useless new data structure in § 3, and Bob Tarjan recently
observed that 2-3-4 trees can have the same property. I also thank John Warnock,
Leo Guibas, Bob Sedgewick, Mark Brown, Jurg Nievergelt, Herbert Edelsbrunner,

Jean Vuillemin, the referees, and others for discussions that led to the present algorithms
and presentation.

Appendix A. Pascal procedures for radix priority search trees.

PROCEDURE InsertPair(VAR t: RPSTPtr; newPr: Pair;
lTowerX: KeyRange; upperX: KeyBound);

VAR
p: Pair;
middleX: KeyRange;
BEGIN
IF t = NIL THEN
BEGIN
NEW(t); (* add a new leaf node *)
tt.p := newPr;

tr.left := NIL;
tr.right := NIL;
END
ELSE IF tt.p.x <> newPr.x (* assumes unique x values *)
THEN
BEGIN
IF newPr.y < tt.p.y THEN (* new pair beats existing one *)
BEGIN p := tt.p; t*.p := newPr END
(* exchange new/existing *)
ELSE p := newPr;
middleX := (lowerX+upperX) DIV 2;
IF p.x < middleX
THEN InsertPair(tr.left, p, lowerX, middieX)
ELSE InsertPair(tt.right, p, middleX, upperX);
END;
(* ELSE this pair already present, so don't insert it *)
END; (* of InsertPair *)



268 EDWARD M. McCREIGHT

PROCEDURE DeletePair(VAR t: RPSTPtr; oldPr: Pair;
lowerX: KeyRange; upperX: KeyBound);
VAR
middleX: KeyRange;
BEGIN
IF t <> NIL THEN
BEGIN
IF t*.p.x = oldPr.x (* assumes unique x values *)
THEN
BEGIN (* have located pair to delete *)
IF t+.left <> NIL THEN
BEGIN
IF tt.right <> NIL THEN
BEGIN (* node has both left and right subtrees *)
IF tr.leftt.p.y < tr.rightr.p.y THEN
BEGIN (* left beats right *)
tr.p := tr.leftr.p;
DeletePair(tt.left, t*.p, lowerX, upperX);
END
ELSE
BEGIN (* right beats left *)
tt.p := tr.rightt.p;
DeletePair(tt.right, t*.p, lowerX, upperX);
END;
END
ELSE
BEGIN (* node has only left subtree *)
tr.p = tr.leftr.p;
DeletePair(tt.left, tt.p, lowerX, upperX);
END;
END
ELSE
BEGIN
IF t*.right <> NIL THEN
BEGIN (* node has only right subtree *)
tt.p := tr.rightt.p;
DeletePair(tt.right, tt.p, lowerX, upperX);

END

ELSE
BEGIN (* node has no subtrees *)
DISPOSE(t);
t := NIL;
END;

END;

END
ELSE

BEGIN (* pair to delete is in a subtree *)
middieX := (lowerX+upperX) DIV 2;
IF 01dPr.x < middieX
THEN DeletePair(tt.left, oldPr, lowerX, middleX)
ELSE DeletePair(tt.right, oldPr, middleX, upperX);
END;
END;
(* ELSE this pair wasn't in the tree so it can't be deleted *)
END; (* of DeletePair *)



PRIORITY SEARCH TREES 269

TYPE CondPair = RECORD
valid: BOOLEAN;
p: Pair;
END;

FUNCTION MinXInRectangle(t: RPSTPtr; x0, x1, y1: KeyRange;
lowerX: KeyRange; upperX: KeyBound): CondPair;
VAR
c: CondPair;
middieX: KeyRange;
BEGIN
IF t <> NIL THEN
BEGIN
IF tt.p.y > yl1 THEN
(* No nodes in this subtree lie in the search
rectangle, because they all have y-values that are
too large. *)
c.valid := FALSE
ELSE
BEGIN
middieX := (lowerX+upperX) DIV 2;

IF x0 < middleX THEN
(* The answer can only lie in the left subtree
if some point in the search rectangle
could lie in the left subtree. *)
¢ := MinXInRectangle(t*.left, x0, x1, yi,
lowerX, middleX)
ELSE c.valid := FALSE;

IF (NOT c.valid) AND (middleX <= x1) THEN
(* The answer can only lie in the right subtree
if no point in the left subtree lies in the search
rectangle, but some point in the search rectangle
could 1ie in the right subtree. *)
¢ := MinXInRectangle(tt.right, x0, x1, y1,
middieX, upperX);

IF (x0 <= tt.p.x) AND (tt.p.x <= x1) AND
((NOT c.valid) OR (tt.p.x < c.p.x)) THEN
(* t*.p is best of all in the search rectangle *)

BEGIN
c.valid := TRUE;
c.p := tr.p;
END;
END
END
ELSE c.valid := FALSE; (* empty subtree *)
MinXInRectangle := c;

END; (* of MinXInRectangle *)



270 EDWARD M. McCREIGHT

FUNCTION MaxXInRectangle(t: RPSTPtr; x0, x1, yl: KeyRange;
TowerX: KeyRange; upperX: KeyBound): CondPair;
VAR
c: CondPair;
middleX: KeyRange;
BEGIN
IF t <> NIL THEN
BEGIN
IF tt.p.y > y1 THEN
(* No nodes in this subtree 1ie in the search
rectangle, because they all have y-values that are
too large. *)
c.valid := FALSE
ELSE
BEGIN
middieX := (lowerX+upperX) DIV 2;

IF middleX < x1 THEN
(* The answer can only lie in the right subtree
if some point in the search rectangle
could lie in the right subtree. *)
c := MaxXInRectangle(tr.right, x0, x1, y1,
middleX, upperX)
ELSE c.valid := FALSE;

IF (NOT c.valid) AND (x0 <= middleX) THEN
(* The answer can only lie in the left subtree
if no point in the right subtree lies in the search
rectangle, but some point in the search rectangle
could 1ie in the left subtree. *)
c := MaxXInRectangle(tt.left, x0, x1, y1,
lowerX, middleX);

IF (x0 <= tt.p.x) AND (tr.p.x <= x1) AND
((NOT c.valid) OR (c.p.x < tt.p.x)) THEN
(* t*.p is best of all in the search rectangle *)

BEGIN
c.valid := TRUE;
c.p := tt.p;
END;
END
END
ELSE c.valid := FALSE; (* empty subtree *)
MaxXInRectangle := c;

END; (* of MaxXInRectangle *)



PRIORITY SEARCH TREES 271

FUNCTION MinYInXRange(t: RPSTPtr; x0, x1: KeyRange;
lowerX: KeyRange; upperX: KeyBound): CondPair;
VAR
¢, cRight: CondPair;
middieX: KeyRange;
BEGIN
IF t <> NIL THEN
IF (x0 <= tt.p.x) AND (tt.p.x <= x1) THEN
(* This node's p pair lies in the x range, and it must
be the min y in its subtree because of the priority
queue invariant on y. *)
BEGIN
c.valid := TRUE;
c.p = tr.p;
END
ELSE
BEGIN
middleX := (lowerX+upperX) DIV 2;

IF x0 < middleX THEN ¢ :=
MinYInXRange(tr.left, x0, x1, lowerX, middleX)
ELSE c.valid := FALSE;

IF middleX <= x1 THEN cRight :=
MinYInXRange(tt.right, x0, x1, middleX, upperX)
ELSE cRight.valid := FALSE;

IF NOT c.valid OR
(cRight.valid AND (cRight.p.y < c.p.y)) THEN

¢ := cRight;
END
ELSE c.valid := FALSE; (* empty subtree *)
MinYInXRange := c;

o
END; (* of MinYInXRange *)

FUNCTION EnumerateRectangle(t: RPSTPtr; x0, x1, y1l: KeyRange;
FUNCTION Report(Pair): BOOLEAN;
lowerX: KeyRange; upperX: KeyBound): BOOLEAN;
VAR
continue: BOOLEAN;
middleX: KeyRange;
BEGIN
IF t <> NIL THEN
IF ttr.p.y <= y1 THEN
BEGIN (* node passes y test *)
IF (x0 <= t*.p.x) AND (tt.p.x <= x1) THEN
continue := Report(tt.p)
ELSE continue := TRUE;
middleX := (lowerX+upperX) DIV 2;
IF continue AND (x0 < middleX)
THEN
continue := EnumerateRectangle(tr.left, x0, x1, y1,
Report, lowerX, middleX);
IF continue AND (middlieX <= x1)

THEN
continue := EnumerateRectangle(tt.right, x0, x1, y1,
Report, middleX, upperX);
EnumerateRectangle := continue;
END

ELSE EnumerateRectangle := TRUE (* node fails y test *)
ELSE EnumerateRectangle := TRUE; (* empty subtree *)
END; (* of EnumerateRectangle *)



272 EDWARD M. McCREIGHT

Appendix B. Pascal procedures for balanced priority search trees.

PROCEDURE BalancedInsertPair(VAR t: BPSTPtr; newPr: Pair;
useAsP: BOOLEAN);
BEGIN (* Top-level call has useAsP = TRUE *)
IF t = NIL THEN
BEGIN (* put newPr in the q field of a new leaf node *)
NEW(t);
tt.q := newPr;
tr.left := NIL;
tr.right := NIL;
tt.validP := FALSE;
tt.duplQ := NOT useAsP;

tt.balance := leafBalance
(* depends on tree family *)
END
ELSE
BEGIN

IF useAsP AND ((NOT tt.validP) OR (newPr.y < tt.p.y)) THEN
BEGIN (* newPr belongs in tt.p *)
DisposeP(tt);
tt.p := newPr;
tt.validP := TRUE;
useAsP := FALSE;
END;
IF newPr.x < tt.q.x
THEN BalancedInsertPair(tt.left, newPr, useAsP)
ELSE BalancedInsertPair(tt.right, newPr, useAsP);
AdjustBalanceForInsert(t);
(* implementation varies by tree family *)
END;
END; (* of BalancedInsertPair *)

PROCEDURE BalancedDeletePair(VAR t: BPSTPtr; oldPr: Pair);

TYPE
ExtractedPair = RECORD
q: Pair;
dup1AsP: BOOLEAN (* q appears as p field higher in tree *)
END;
VAR
n: ExtractedPair;
d: BPSTPtr;

FUNCTION ExtractMaxQX(VAR t: BPSTPtr): ExtractedPair;
VAR
d: BPSTPtr;
BEGIN (* extract the pair with maximal g.x in t *)
IF tr.right = NIL THEN
BEGIN
ExtractMaxQX.q := tt.q;
ExtractMaxQX.duplAsP := tt.duplQ;
DisposeP(tt);
d := t;
t = tr.left;
DISPOSE(d):
END
ELSE



PRIORITY SEARCH TREES 273

BEGIN

ExtractMaxQX := ExtractMaxQX(tt.right);

IF ExtractMaxQX.duplAsP AND tt.validP
AND (tt.p = ExtractMaxQX.q) THEN

BEGIN
ExtractMaxQX.dupl1AsP := FALSE;
ExtractP(tr);
(* re-fill invalidated p field if possible *)
END;

AdjustBalancefForNeighborExtract(t);
(* implementation varies by tree family *)
END
END; (* of ExtractMaxQX *)

BEGIN
IF t <> NIL THEN
BEGIN
IF t*.q = oldPr THEN
(* have located node whose .q field is oldPr *)
BEGIN
DisposeP(tt);
IF (tt.left = NIL) OR (tt.right = NIL) THEN
(* t* has at most one subtree and can
be bypassed *)

BEGIN

d :=t;

IF tt+.left = NIL
THEN t := tr.right
ELSE t := tt.left;

DISPOSE(d);

END

ELSE

(* tt has both subtrees. We must find
a neighboring pair n.q that can
replace tt.q without violating x-order. *)
BEGIN
n := ExtractMaxQX(tt+.left);
tt.q := n.q;
tt.duplQ := n.duplAsP;
ExtractP(t?);
(* re-fill invalidated p field if possible *)
END;
END
ELSE
BEGIN (* oldPr must be a .q field in a subtree *)
IF 01dPr.x < tt.q.x
THEN BalancedDeletePair(tt.left, oldPr)
ELSE BalancedDeletePair(tt.right, oldPr);
IF t+.validP AND (tt.p = oldPr) THEN
ExtractP(t+);
(* re-fill invalidated p field if possible *)
END;
AdjustBalanceForDelete(tt);
(* implementation varies by tree family *)
END
(* ELSE this pair wasn't in the tree so it can't be deleted *);
END; (* of BalancedDeletePair *)



274 EDWARD M. McCREIGHT

PROCEDURE RotateRight(VAR t: BPSTPtr);
VAR

e, c: BPSTPtr;
BEGIN (* implements the rotation in Figure 2 *)

e := t;
DisposeP(et);
c := et.left;

DisposeP(ct);
et.left := ct.right;
ExtractP(et);
ct.right := e;
ExtractP(ct);
AdjustBalanceForRotateRight(c);
(* implementation varies by tree family *)
t :=c;
END; (* of RotateRight *)

PROCEDURE DisposeP(VAR t: BPST);

BEGIN (* DisposeP can cause a temporary violation of the second
structural invariant, leaving a node in the middle of the tree
with an invalid p field while one of its children has a
valid p field. This violation is usually repaired by a
subsequent invocation of ExtractP *)

IF t.validP THEN
BEGIN
IF t.p.x < t.q.x THEN

BEGIN (* dispose into left subtree *)
IF t.p = t.leftt.q THEN
(* maintains third invariant, depends on
uniqueness of pairs in t *)
t.left?.dup1Q := FALSE
ELSE
BEGIN
DisposeP(t.leftt);
t.leftr.p := t.p;
t.leftr.validP := TRUE;
END
END
ELSE
BEGIN (* dispose into right subtree *)
IF t.p = t.rightr.q THEN
(* maintains third invariant, depends on
uniqueness of pairs in t *)
t.rightt.duplQ := FALSE
ELSE
BEGIN
DisposeP(t.rightt);
t.rightt.p := t.p;
t.rightt.validP := TRUE;
END
END;
t.validP := FALSE;
END
(* ELSE no p field to dispose *);
END; (* of DisposeP *)



PRIORITY SEARCH TREES 275

PROCEDURE ExtractP(VAR t: BPST);
CONST Worst = LastKey+1;
VAR
leftY,rightY: FirstKey..Worst;
BEGIN
leftY := Worst;
IF t.left <> NIL THEN
BEGIN
IF t.leftt.validP THEN leftY := t.leftt.p.y;:
IF NOT t.leftt.duplQ THEN leftY := MIN(leftY, t.leftt.q.y);
END;
rightY := Worst;
IF t.right <> NIL THEN
BEGIN
IF t.rightt.validP THEN rightY := t.rightt.p.y;
IF NOT t.rightt.dup1Q THEN rightY := MIN(rightY, t.rightt.q.y);
END;
IF leftY < rightY THEN
BEGIN (* best is left *)
IF t.leftt.validP AND (leftY = t.leftt.p.y) THEN
BEGIN (* steal his p field *)
t.p = t.leftr.p;
ExtractP(t.lefttr);
END
ELSE
BEGIN (* his q field is unduplicated and better,
so duplicate it *)
t.p := t.leftr.q;
t.leftt.dup1Q := TRUE;
END;
t.validP := TRUE;
END
ELSE IF rightY <> Worst THEN
BEGIN (* best is right *)
IF t.rightt.validP AND (rightY = t.rightt.p.y) THEN
BEGIN (* steal his p field *)
t.p := t.rightt.p;
ExtractP(t.rightt);
END
ELSE
BEGIN (* his g field is unduplicated and better,
so duplicate it *)
t.p := t.rightt.q;
t.rightt.dupl1Q := TRUE;
END;
t.validP := TRUE;
END
ELSE t.validP := FALSE; (* no candidates *)
END; (* of ExtractP *)



276 EDWARD M. McCREIGHT

REFERENCES

[1] D. E. KNUTH, The Art of Computer Programming, Vol. 3, Sorting and Searching, Addison-Wesley,
Reading, MA, 1973, pp. 142-145.

[2] H. J. OLIVIE, A new class of balanced search trees; half-balanced binary search trees, RAIRO Theor.
Inform., 16 (1982), pp. 51-71.

[3] E. MCCREIGHT, Efficient algorithms for enumerating intersecting intervals and rectangles, Xerox Palo
Alto Research Center Technical Report CSL-80-9, Xerox Corporation, Palo Alto Research Center,
3333 Coyote Hill Road, Palo Alto, CA, 1980.

[4] L. GuiBAs AND J. SAXE, Private communication, 1980.

[5} H. EDELSBRUNNER, Dynamic rectangle intersection searching, Report 47, Information Processing
Institute, Technical University of Graz, Graz, Austria, February, 1980.

Dynamic data structures for orthogonal intersection queries, Report 59, Information Processing
Institute, Technical University of Graz, Graz, Austria, October, 1980.

[7] M. 1. SHAMOs AND D. HOEY, Geometric instersection problems, 17th Annual IEEE Symposium on
Foundations of Computer Science, 1975, pp. 208-215.

[8] H. EDELSBRUNNER, A time- and space-optimal solution for the planar all intersecting rectangles problem,
Report 50, Information Processing Institute, Technical University of Graz, Graz, Austria, April,
1980.

[9] J. BENTLEY, Priority queues with range restrictions, Bulletin of the European Association of Theoretical
Computer Science, #9, H. Maurer, ed., Technical University of Graz, Graz, Austria, October,
1979, pp. 7-8.

[10] J. L. BENTLEY AND D. WoOD, An optimal worst-case algorithm for reporting intersections of rectangles,
IEEE Trans. Comp., C-29 (1980), pp. 571-577.

[11] R. P. BRENT, Efficient implementation of the first-fit strategy for dynamic storage allocation, TR-CS-81-05,
Dept. Computer Science, Australian National University, Canberra, ACT 2600, Australia, 1981,
Australian Computer Science Communications, to appear.

[12] J. NIEVERGELT AND F. P. PREPARATA, Plane-sweep algorithms for interesting geometric figures,
Technical Report in preparation, Institut fiir Informatik, ETH, Zurich.

[13] J. VUILLEMIN, A unifying look at data structures, Comm. ACM, 23 (1980), pp. 229-239.

[14] R. BAYER, Symmetric binary B-trees: data structure and maintenance algorithms, Acta Inform., 1 (1972),
pp. 290-306.

[15] L. J. GuiBAs AND R. SEDGEWICK, A dichromatic framework for balanced trees, 19th Annual IEEE
Symposium on Foundations of Computer Science, IEEE publication 78CH1397-9, 1978, pp. 8-21.

[16] R. TARJAN, Private communication, September, 1982.

(6]




