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The vector representation of rotation introduced below is based on Euler’s theorem, and has three pa-
rameters. The conversion from a rotation vector to a rotation matrix is called Rodrigues’ formula, and is
derived below based on geometric considerations. The inverse of Rodrigues’ formula is developed as well.

1 Rotation Vectors

A rotation matrix is an array of nine numbers. These are subject to the six norm and orthogonality con-
straints, so only three degrees of freedom are left: if three of the numbers are given, the other six can be
computed from these equations. In numerical optimization problems, the redundancy of rotation matrices is
inconvenient, and a minimal representation of rotation is often preferable.

The simplest such representation is based on Euler’s theorem, stating that every rotation can be de-
scribed by an axis of rotation and an angle around it. A compact representation of axis and angle is a
three-dimensional rotation vector whose direction is the axis and whose magnitude is the angle in radians.
The axis is oriented so that the acute-angle rotation is counterclockwise around it. As a consequence, the
angle of rotation is always nonnegative, and at most π.

While simple, the rotation-vector representation of rotation must be used with some care. As defined
earlier, the set of all rotation vectors is the three-dimensional ball1 of radius π. However, two antipodal
points on the sphere, that is, two vectors r and −r with norm π, represent the same 180-degree rotation.

Whether this lack of uniqueness is a problem depends on the application. For instance, when compar-
ing rotations, it would be troublesome if the same rotation had two different representations. To preserve
uniqueness, one can carefully peel away half of the sphere from the ball, and define the half-open rotation
ball as the following union of disjoint sets:

{r : ‖r‖ < π} ∪ {r : ‖r‖ = π ∩ r1 > 0} ∪ {r : ‖r‖ = π ∩ r1 = 0 ∩ r2 > 0} ∪ {(0, 0, π)} .

These sets are respectively the open unit ball, the open hemisphere with its pole at (π, 0, 0), the open half-
equator of that hemisphere centered at (0, π, 0), and the individual point (0, 0, π). The last three sets are
illustrated in Figure 1.

The formula for finding the rotation matrix corresponding to an angle-axis vector is called Rodrigues’
formula, which is now derived.

Let r be a rotation vector. If the vector is (0, 0, 0), then the rotation is zero, and the corresponding matrix
is the identity matrix:

r = 0→ R = I .

1A ball of radius r in Rn is the set of points p such that ‖p‖ ≤ r. In contrast, a sphere of radius r in Rn is the set of points p
such that ‖p‖ = r.
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(0, π, 0)

(0, 0, π)

Figure 1: The parts of the sphere of radius π that are included in the half-open rotation ball. The interior
of the ball is included as well, but is not shown in the figure for clarity. The pole of the hemisphere in the
picture is the point (π, 0, 0).

Let us now assume that r is not the zero vector. The unit vector for the axis of rotation is then

u =
r

‖r‖

and the angle is
θ = ‖r‖ radians.

The rotation has no effect on a point p along the axis. Suppose then that p is off the axis. To see the effect
of rotation on p, we decompose p into two orthogonal vectors, one along u and the other perpendicular to
it:

a = Pup = uuTp

is along u, and
b = p− a = (1− uuT )p

is orthogonal to u, as shown in Figure 2.
The rotation leaves a unaltered, and rotates b by θ in the plane orthogonal to u. To express the latter

rotation, we introduce a third vector
c = u× p

that is orthogonal to both u and p, and has the same norm as b (because u is a unit vector and because of
the definition of cross product). Since b and c have the same norm, the rotated version of b is

b′ = b cos θ + c sin θ .

The rotated version of the entire vector p is then

p′ = a+ b′ = a+ b cos θ + c sin θ = uuTp+ (1− uuT )p cos θ + u× p sin θ

= [I cos θ + (1− cos θ)uuT + u× sin θ]p
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Figure 2: Vectors used in the derivation of Rodrigues’ formula.

so that we have the result in the top box of Table 1. That equation is called Rodrigues’ formula.
To invert this formula, note that the sum of its first two terms,

I cos θ + (1− cos θ)uuT

is a symmetric matrix, while the last term,
u× sin θ

is antisymmetric. Therefore,

R−RT = 2u× sin θ =

 0 −u3 u2
u3 0 −u1
−u2 u1 0

 sin θ = 2

 0 −ρ3 ρ2
ρ3 0 −ρ1
−ρ2 ρ1 0

 .

Since the vector u has unit norm, the norm of the vector (ρ1, ρ2, ρ3) is sin θ. Direct calculation shows that
the trace, that is, the sum of the diagonal elements of the rotation matrix R, is equal to 2 cos θ + 1, so that

cos θ = (r11 + r22 + r33 − 1)/2 .

If sin θ = 0, and cos θ = 1 then the rotation vector is

r = 0 .

If sin θ = 0, and cos θ = −1 then Rodrigues’ formula simplifies to the following:

R = −I + 2uuT
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so that
uuT =

R+ I

2
.

This equation shows that each of the three columns of (R + I)/2 is a multiple of the unknown unit vector
u. Since the norm of u is one, not all its entries can be zero. Let v be any nonzero column of R+ I . Then

u =
v

‖v‖

and
r = uπ .

In the general case, sin θ 6= 0. Then, the normalized rotation vector is

u =
ρ

‖ρ‖
.

From sin θ and cos θ, the two-argument arc-tangent function yields the angle θ, and

r = uθ .

The two-argument function arctan2 is defined as follows for (x, y) 6= (0, 0)

arctan2(y, x) =


arctan( yx) if x > 0
π + arctan( yx) if x < 0
π
2 if x = 0 and y > 0
−π

2 if x = 0 and y < 0

(1)

and is undefined for (x, y) = (0, 0). This function returns the arc-tangent of y/x (notice the order of the
arguments) in the proper quadrant, and extends the function by continuity along the y axis.

Table 1 summarizes this discussion.
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The rotation matrix R corresponding to the rotation vector

r such that ‖r‖ ≤ π

can be computed as follows:
θ = ‖r‖

If θ = 0, then R = I . Otherwise,

u =
r

θ
and R = I cos θ + (1− cos θ)uuT + u× sin θ .

The rotation vector r corresponding to the rotation matrix

R such that RTR = RRT = I and det(R) = 1

can be computed as follows:

A =
R−RT

2
, ρ =

[
a32 a13 a21

]T
s = ‖ρ‖ , c = (r11 + r22 + r33 − 1)/2 .

If s = 0 and c = 1, then r = 0. Otherwise, if s = 0 and c = −1, let v = a nonzero column of
R+ I . Then,

u =
v

‖v‖
, r = S1/2(uπ) .

In this expression, the function S1/2(r) flips signs of the coordinates of vector r (assumed here to
have norm π) to force it onto the half-hemisphere of Figure 1, in order to ensure uniqueness:

S1/2(r) =


−r if ‖r‖ = π and ((r1 = r2 = 0 and r3 < 0)

or (r1 = 0 and r2 < 0) or (r1 < 0))
r otherwise.

Finally, if sin θ 6= 0,
u =

ρ

s
, θ = arctan2(s, c) , and r = uθ

where the function arctan2 is defined in equation (1).

Table 1: Rodrigues’ formula (top box) and its inverse (bottom box) transform between a rotation vector r
and a rotation matrix R.


