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Preference elicitation (elections)

> center/auctioneer/

organizer/…

?”“

“yes”

> ?”“

“no”

“most 

preferred?”
“ ”

> ?”“

“yes”

wins



Preference elicitation (auction)

center/auctioneer/

organizer/…

“v({A})?”

“30”

“40”

“What would you buy 

if the price for A is 30, 

the price for B is 20, 

the price for C is 20?”

“nothing”

“v({A,B,C}) 

< 70?”

“v({B, C})?”

“yes”

gets {A}, 

pays 30

gets {B,C}, 

pays 40



Multistage mechanisms

• In a multistage (or iterative) mechanism, 
– bidders communicate something, 

– then find out something about what others communicated,

– then communicate again, etc.

• After enough information has been communicated, 
the mechanism declares an outcome

• What multistage mechanisms have we seen already?



A (strange) example multistage auction
bidder 1: is your valuation greater than 4?

bidder 2: is your 

valuation greater 

than 6?

bidder 2: is your 

valuation greater 

than 2?

yes

yes yes

yes yes yes

bidder 1: is your v. 

greater than 8?

bidder 1: is 

your v. 

greater than 

8?

bidder 1: is your 

v. greater than 3?

no

no

no no no

no

1 wins, 

pays 6

1 wins, 

pays 6

1 wins, 

pays 4

2 wins, 

pays 4

1 wins, 

pays 2

2 wins, 

pays 1

1 wins, 

pays 0

• Can choose to hide information from agents, but only
insofar as it is not implied by queries we ask of them



Converting single-stage to multistage

• One possibility: start with a single-stage mechanism 
(mapping o from Θ1 x Θ2 x … x Θn to O)

• Center asks the agents queries about their types
– E.g., “Is your valuation greater than v?”

– May or may not (explicitly) reveal results of queries to others

• Until center knows enough about θ1, θ2, …, θn to 
determine o(θ1, θ2, …, θn)

• The center’s strategy for asking queries is an 
elicitation algorithm for computing o

• E.g., Japanese auction is an elicitation algorithm for 
the second-price auction



Elicitation algorithms

• Suppose agents always answer truthfully

• Design elicitation algorithm to minimize queries 
for given rule

• What is a good elicitation algorithm for STV?

• What about Bucklin?



An elicitation algorithm for the Bucklin 

voting rule based on binary search
[Conitzer & Sandholm 05]

• Alternatives: A B C D E F G H

• Top 4? {A B C D} {A B F G} {A C E H}

• Top 2? {A D} {B F} {C H}

• Top 3? {A C D} {B F G} {C E H}

Total communication is nm + nm/2 + nm/4 + … ≤ 2nm bits

(n number of voters, m number of candidates)



Funky strategic phenomena in 

multistage mechanisms
• Suppose we sell two items A and B in parallel English auctions 

to bidders 1 and 2
– Minimum bid increment of 1

• No complementarity/substitutability

• v1(A) = 30, v1(B) = 20, v2(A) = 20, v2(B) = 30, all of this is 
common knowledge

• 1’s strategy: “I will bid 1 on B and 0 on A, unless 2 starts 
bidding on B, in which case I will bid up to my true valuations 
for both.”

• 2’s strategy: “I will bid 1 on A and 0 on B, unless 1 starts 
bidding on A, in which case I will bid up to my true valuations 
for both.”

• This is an equilibrium!
– Inefficient allocation

– Self-enforcing collusion

– Bidding truthfully (up to true valuation) is not a dominant strategy



Ex-post equilibrium
• In a Bayesian game, a profile of strategies is an ex-post 

equilibrium if for each agent, following the strategy is optimal 
for every vector of types (given the others’ strategies)
– That is, even if you are told what everyone’s type was after the fact, you 

never regret what you did

– Stronger than Bayes-Nash equilibrium

– Weaker than dominant-strategies equilibrium

• Although, single-stage mechanisms are ex-post incentive compatible if and 
only if they are dominant-strategies incentive compatible

• If a single-stage mechanism is dominant-strategies incentive-
compatible, then any elicitation protocol for it (any 
corresponding multistage mechanism) will be ex-post incentive 
compatible

• E.g., if we elicit enough information to determine the Clarke 
payments, telling the truth will be an ex-post equilibrium (but 
not dominant strategies)



How do we know that we have found the 

best elicitation protocol for a mechanism?
• Communication complexity theory: 

agent i holds input xi, agents must 

communicate enough information 

to compute some f(x1, x2, …, xn)

• Consider the tree of all possible 

communications:

Agent 1

Agent 2 0 01 1

10

f=0 f=0f=1f=1
• Every input vector goes to some 

leaf
x1, x2 x1’, x2

x1’, x2’
• If x1, …, xn goes to same leaf as x1’, …, xn’ then so must any mix of them 

(e.g., x1, x2’, x3, …, xn’)

• Only possible if f is same in all 2n cases

• Suppose we have a fooling set of t input vectors that all give the same 

function value f0, but for any two of them, there is a mix that gives a 

different value

• Then all vectors must go to different leaves  tree depth must be ≥ log(t)

• Also lower bound on nondeterministic communication complexity

– With false positives or negatives allowed, depending on f0

Example on board: finding which 

valuation is higher (or tie)



Combinatorial auction WDP requires 

exponential communication [Nisan & Segal JET 06]
• … even with two bidders!

• Let us construct a fooling set

• Consider valuation functions with
– v(S) = 0 for |S| < m/2

– v(S) = 1 for |S| > m/2

– v(S) = 0 or 1 for |S| = m/2

• If m is even, there are 2^(m choose m/2) such valuation 
functions (doubly exponential)

• In the fooling set, bidder 1 will have one such valuation 
function, and bidder 2 will have the dual such valuation 
function, that is, v2(S) = 1 - v1(I \ S)

• Best allocation gives total value of 1

• However, now suppose we take distinct (v1, v2), (v1’, v2’)

• WLOG there must be some set S such that v1(S) = 1 and v1’(S) 
= 0 (hence v2’(I \ S) = 1)

• So on (v1, v2’) we can get a total allocation value of 2!



iBundle: an ascending CA [Parkes & Ungar 00]

• Each round, each bidder i faces separate price pi(S) for each 
bundle S

– Note: different bidders may face different prices for the 
same bundle

– Prices start at 0

• A bidder (is assumed to) bid pi(S) on the bundle(s) S that 
maximize(s) her utility given the current prices, i.e., that 
maximize(s) vi(S) - pi(S) (straightforward bidding)

– Bidder drops out if all bundles would give negative utility

• Winner determination problem is solved with these bids

• If some (active) bidder i did not win anything, that bidder’s 
prices are increased by ε on each of the bundles that she bid 
on (and supersets thereof), and we go to the next round

• Otherwise, we terminate with this allocation & these prices


