
Learning in games

Vincent Conitzer 

conitzer@cs.duke.edu



“2/3 of the average” game

• Everyone writes down a number between 0 and 100

• Person closest to 2/3 of the average wins

• Example:

– A says 50

– B says 10

– C says 90

– Average(50, 10, 90) = 50

– 2/3 of average = 33.33

– A is closest (|50-33.33| = 16.67), so A wins



“2/3 of the average” game revisited

0

100

(2/3)*100

(2/3)*(2/3)*100

…

dominated

dominated after removal of 

(originally) dominated strategies



Learning in (normal-form) games

• Approach we have taken so far when playing a game: just 
compute an optimal/equilibrium strategy

• Another approach: learn how to play a game by
– playing it many times, and 

– updating your strategy based on experience

• Why?
– Some of the game’s utilities (especially the other players’) may be 

unknown to you

– The other players may not be playing an equilibrium strategy

– Computing an optimal strategy can be hard

– Learning is what humans typically do

– …

• Learning strategies ~ strategies for the repeated game

• Does learning converge to equilibrium?



Iterated best response

0, 0 -1, 1 1, -1

1, -1 0, 0 -1, 1

-1, 1 1, -1 0, 0

• In the first round, play something arbitrary

• In each following round, play a best response against 
what the other players played in the previous round

• If all players play this, it can converge (i.e., we reach 
an equilibrium) or cycle

-1, -1 0, 0

0, 0 -1, -1

• Alternating best response: players alternatingly 
change strategies: one player best-responds each 
odd round, the other best-responds each even round

rock-paper-scissors

a simple congestion game



Fictitious play [Brown 1951]

0, 0 -1, 1 1, -1

1, -1 0, 0 -1, 1

-1, 1 1, -1 0, 0

• In the first round, play something arbitrary

• In each following round, play a best response against 
the empirical distribution of the other players’ play
– I.e., as if other player randomly selects from his past actions

• Again, if this converges, we have a Nash equilibrium

• Can still fail to converge…

-1, -1 0, 0

0, 0 -1, -1

rock-paper-scissors
a simple congestion game



Fictitious 

play on 

rock-paper-

scissors

0, 0 -1, 1 1, -1

1, -1 0, 0 -1, 1

-1, 1 1, -1 0, 0

Row Column

30% R, 50% P, 20% S 30% R, 20% P, 50% S



Does the empirical distribution 

of play converge to equilibrium?

• … for iterated best response?

• … for fictitious play?

3, 0 1, 2

1, 2 2, 1



Fictitious play is guaranteed to 

converge in…

• Two-player zero-sum games [Robinson 
1951]

• Generic 2x2 games [Miyasawa 1961]

• Games solvable by iterated strict dominance 
[Nachbar 1990]

• Weighted potential games [Monderer & 
Shapley 1996]

• Not in general [Shapley 1964]
• But, fictitious play always converges to the set of ½-

approximate equilibria [Conitzer 2009; more detailed analysis by 

Goldberg, Savani, Sørensen, Ventre 2011]



Shapley’s game on which fictitious 

play does not converge

• starting with (U, M):

0, 0 0, 1 1, 0

1, 0 0, 0 0, 1

0, 1 1, 0 0, 0



“Teaching”

4, 4 3, 5

5, 3 0, 0

• Suppose you are playing against a player that uses a 
strategy that eventually learns to best-respond

• Also suppose you are very patient, i.e., you only care 
about what happens in the long run

• How will you (the row player) play in the following 
repeated games?

1, 0 3, 1

2, 1 4, 0

• Note relationship to optimal strategies to commit to

• There is some work on learning strategies that are in 
equilibrium with each other [Brafman & Tennenholtz AIJ04]



Evolutionary game theory
• Given: a symmetric game

1, 1 0, 2

2, 0 -1, -1

dove

dove

hawk

hawk

• A large population of players plays this game, players are 
randomly matched to play with each other

• Each player plays a pure strategy
– Fraction of players playing strategy s = ps

– p is vector of all fractions ps (the state)

• Utility for playing s is u(s, p) = Σs’ps’u(s, s’)

• Players reproduce at a rate that is proportional to their utility, 
their offspring play the same strategy
– Replicator dynamic

• dps(t)/dt = ps(t)(u(s, p(t)) - Σs’ps’u(s’, p(t)))

• What are the steady states of this?

Nash equilibria: (d, h), 

(h, d), ((.5, .5), (.5, .5))



Stability

• A steady state is stable if slightly perturbing the state 
will not cause us to move far away from the state

• E.g. everyone playing dove is not stable, because if a 
few hawks are added their percentage will grow

• What about the mixed steady state?

• Proposition: every stable steady state is a Nash 
equilibrium of the symmetric game

• Slightly stronger criterion: a state is asymptotically 
stable if it is stable, and after slightly perturbing this 
state, we will (in the limit) return to this state

1, 1 0, 2

2, 0 -1, -1

dove

dove

hawk

hawk



Evolutionarily stable strategies
• Now suppose players play mixed strategies

• A (single) mixed strategy σ is evolutionarily stable if 
the following is true:
– Suppose all players play σ

– Then, whenever a very small number of invaders enters 
that play a different strategy σ’,

– the players playing σ must get strictly higher utility than 
those playing σ’ (i.e., σ must be able to repel invaders)

• σ will be evolutionarily stable if and only if for all σ’
– u(σ, σ) > u(σ’, σ), or:

– u(σ, σ) = u(σ’, σ) and u(σ, σ’) > u(σ’, σ’)

• Proposition: every evolutionarily stable strategy is 
asymptotically stable under the replicator dynamic



Invasion (1/2)

• Given: population P1 that plays σ = 40% Dove, 

60% Hawk

• Tiny population P2 that plays σ' = 70% Dove, 

30% Hawk invades

• u(σ, σ) = .16*1 + .24*2 + .36*(-1) = .28 but 

u(σ', σ) = .28*1 + .12*2 + .18*(-1) = .34

• σ' (initially) grows in the population; invasion is 

successful

1, 1 0, 2

2, 0 -1, -1

Dove

Dove

Hawk

Hawk



Invasion (2/2)

• Now P1 plays σ = 50% Dove, 50% Hawk

• Tiny population P2 that plays σ' = 70% Dove, 

30% Hawk invades

• u(σ, σ) = u(σ', σ) = .5, so second-order effect:

• u(σ, σ') = .35*1 + .35*2 + .15*(-1) = .9 but

u(σ', σ') = .49*1 + .21*2 + .09*(-1) = .82

• σ' shrinks in the population; invasion is repelled

1, 1 0, 2

2, 0 -1, -1

Dove

Dove

Hawk

Hawk



Evolutionarily stable strategies
[Price and Smith, 1973]

• A strategy σ is evolutionarily stable if the 

following two conditions both hold:

(1) For all σ', we have u(σ, σ) ≥ u(σ', σ) (i.e., 

symmetric Nash equilibrium)

(2) For all σ' (≠ σ) with u(σ, σ) = u(σ', σ), we 

have u(σ, σ') > u(σ', σ')



Rock-

Paper-

Scissors

• Only one Nash equilibrium (Uniform)

• u(Uniform, Rock) = u(Rock, Rock)

• No ESS 

0, 0 -1, 1 1, -1

1, -1 0, 0 -1, 1

-1, 1 1, -1 0, 0



The standard Σ2
P-complete problem

Input: Boolean formula f over variables X1  and X2 

Q: Does there exist an assignment of values to X1

such that for every assignment of values to X2

f is true?



Input: symmetric 2-player normal-form game.  

Q: Does it have an evolutionarily stable strategy?

(Hawk-Dove: yes.  Rock-Paper-Scissors: no.  Safe-Left-Right: no.)

P

NP

coNP

coDP

Σ2
P

Thm. ESS is NP-hard
[Etessami and Lochbihler 2004].

Thm. ESS is coNP-hard
[Etessami and Lochbihler 2004].

Thm. ESS is 

in Σ2
P [Etessami 

and Lochbihler 

2004].Thm. ESS 

is coDP-hard 
[Nisan 2006].

Thm. ESS is 

Σ2
P-hard 

[Conitzer 2013].

The ESS problem


