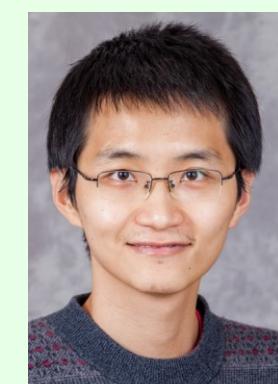
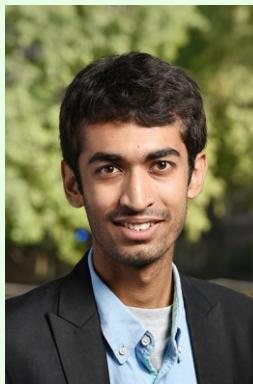


CPS 590.2: Computational Microeconomics: Game Theory, Social Choice, and Mechanism Design



<https://www2.cs.duke.edu/courses/fall18/compsci590.2/>

Instructor: Vincent Conitzer

(Kimberly J. Jenkins University Professor of New Technologies
Professor of [Computer Science](#), Professor of [Economics](#), and Professor of [Philosophy](#))

conitzer@cs.duke.edu

TAs: Harsh Parikh and Hanrui Zhang; also helping: postdoc Yu Cheng

Journal, conference, ...

ACM Transactions on Economics and Computation (TEAC)

19th ACM CONFERENCE ON ECONOMICS AND COMPUTATION
June 18-22 2018 | CORNELL UNIVERSITY | ITHACA, NY

History

*John von
Neumann*

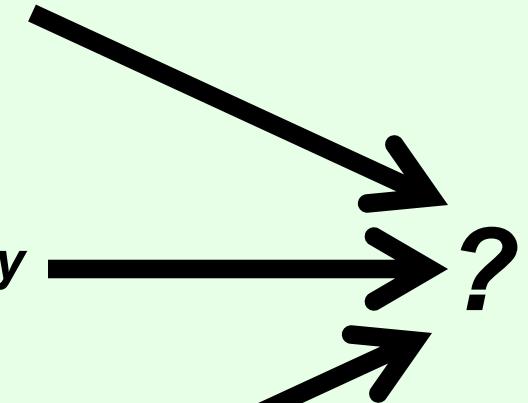
computer architecture
(von Neumann
architecture)


game theory
(minimax theorem)

linear programming
(duality)

***Computer Science
& Engineering***

Economic Theory


***Mathematical
Optimization &
Operations
Research***

1900

1950

2000

CS-ECON@DUKE

Exploring the Intersection of Computer Science and Economics

[Home](#)

[Schedule](#)

[Past Talks](#)

[People](#)

[Mini-retreat](#)

[Reading Group](#)

Who Are We?

We are a group of Duke University faculty, postdocs, and students interested in the intersection of computer science and economics (and the social sciences more broadly) and the impact of this interplay on decisions in information technology and digital business. This includes applying techniques from computer science and optimization to economics -- for example, using computation to design market clearing mechanisms and to implement efficient allocation and pricing in them -- as well as applying techniques from economics to computer science -- for example, designing incentives for users of networked computer systems and social networks.

Contacts

For organizational questions about the seminar series:

- [Yugjian Li](#)
- [Catherine Moon](#)

For other matters, contact the relevant faculty member(s):

- [Atila Abdulkadiroglu](#) (Econ)
- [Vincent Conitzer](#) (CS)
- [Rachel Kranton](#) (Econ)
- [Ben Lee](#) (ECE)
- [Kamesh Munagala](#) (CS)

CS-Econ Talks

- [Upcoming Talks](#)
- [Past Talks](#)

Related Seminars

- [AI Group \(CS\)](#)
- [Algorithms Seminar \(CS\)](#)
- [Decision Sciences Seminar \(Fuqua\)](#)
- [Duke Robotics, Intelligence, and Vision \(DRIV\) Seminar \(CS\)](#)
- [Machine Learning](#)
- [Microeconomic Theory Seminars \(Econ\)](#)

► For Prospective Students

▼ Degree Programs

► M.A. Economics

► M.A. Analytical Political
Economy

M.S. Economics &
Computation

M.S. Quantitative Financial
Economics

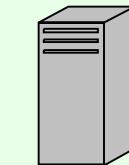
► For Current Students

► EcoTeach: Student Services
Center

M.S. Economics & Computation

The joint field of economics and computer science has emerged from two converging intellectual needs: Computer science has become increasingly important for economists working with big data to address complex questions. Students interested in learning about computational mechanism design with applications to economics are ideal candidates for this program. Students whose interest is more generally focused on data analytics across a broad range of fields may also be interested in Duke's [Master of Quantitative Management](#) (MQM) program, offered at the Fuqua School of Business, and/or Duke's new [Master in Interdisciplinary Data Science](#) (MIDS) program, which is accepting its first class in Fall 2018.

The MSEC program combines the strengths of the Departments of Economics and [Computer Science](#) to educate students in these important computational skills linked to economics, and to prepare them for Ph.D. studies or careers in economics, finance, government, and business. Reflecting this strong interdisciplinary relationship, Duke University [ranks No. 5 for research in economics and computation](#), according to CSRankings.org.

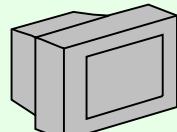

This program is designed to meet the needs of students with varied levels of exposure to either field, but a strong quantitative background is recommended.

What is Economics?

- “Economics is the social science that studies the production, distribution, and consumption of goods and services.” [\[Wikipedia, Aug. 2018\]](#)
- Some key concepts:
 - Economic **agents** or players (individuals, households, firms, ...)
 - Agents’ current **endowments** of goods, money, skills, ...
 - Possible **outcomes** ((re)allocations of resources, tasks, ...)
 - Agents’ **preferences** or **utility functions** over outcomes
 - Agents’ **beliefs** (over other agents’ utility functions, endowments, production possibilities, ...)
 - Agents’ possible **decisions/actions**
 - **Mechanism** that maps decisions/actions to outcomes

An economic picture

$$v(\text{server}) = 200$$


\$ 800

$$v(\text{monitor}) = 100$$

$$v(\text{laptop}) = 400$$

$$v(\text{laptop}) = 200$$

$$v(\text{server}, \text{monitor}) = 400$$

\$ 600

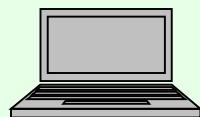
\$ 200

AAAClipArt.com

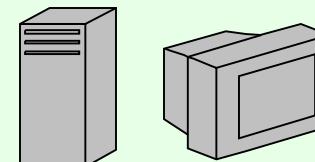
After trade (a more efficient outcome)

$$v(\text{Server}) = 200$$

*... but how do we
get here?
Auctions?
Exchanges?
Unstructured trade?*


$$v(\text{Monitor}) = 100$$

$$v(\text{Laptop}) = 400$$


\$ 1100

$$v(\text{Laptop}) = 200$$

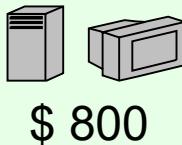
$$v(\text{Server}, \text{Monitor}) = 400$$

\$ 400

\$ 100

Some distinctions in economics

- **Descriptive** vs. **normative** economics
 - Descriptive:
 - seeks only to describe real-world economic phenomena
 - does not care if this is in any sense the “right” outcome
 - Normative:
 - studies how people “should” behave, what the “right” or “best” outcome is
- **Microeconomics** vs. **macroeconomics**
 - Microeconomics: analyzes decisions at the level of individual agents
 - deciding which goods to produce/consume, setting prices, ...
 - “bottom-up” approach
 - Macroeconomics: analyzes “the sum” of economic activity
 - interest rates, inflation, growth, unemployment, government spending, taxation, ...
 - “big picture”

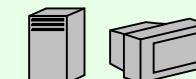

What is Computer Science?

- “Computer science is the study of the theory, experimentation, and engineering that form the basis for the design and use of computers. [...] A computer scientist specializes in the theory of computation and the design of computational systems.” [\[Wikipedia, Aug. 2018\]](#)
- A **computational problem** is given by a function f mapping inputs to outputs
 - For integer x , let $f(x) = 0$ if x is prime, 1 otherwise
 - For an initial allocation of resources x , let $f(x)$ be the (re)allocation that maximizes the sum of utilities
- An **algorithm** is a fully specified procedure for computing f
 - E.g., sieve of Eratosthenes
 - A **correct algorithm** always returns the right answer
 - An **efficient algorithm** returns the answer **fast**
- Computer science is also concerned with building **larger artifacts** out of these building blocks (e.g., personal computers, spreadsheets, the Internet, the Web, search engines, artificial intelligence, ...)

Resource allocation as a computational problem

input

$$v(\text{server, monitor}) = \$400$$
$$v(\text{laptop}) = \$600$$


$$v(\text{server, monitor}) = \$500$$
$$v(\text{laptop}) = \$400$$

output

\$ 750

\$ 450

Here, gains from trade (\$300) are divided evenly (not essential)

Economic mechanisms

“true” input

$$v(\text{server, microwave}) = \$400$$
$$v(\text{laptop}) = \$600$$

\$ 800

$$v(\text{server, microwave}) = \$500$$
$$v(\text{laptop}) = \$400$$

\$ 400

agent 1's
bidding
algorithm

agents' bids

$$v(\text{server, microwave}) = \$500$$
$$v(\text{laptop}) = \$501$$

\$ 800

$$v(\text{server, microwave}) = \$451$$
$$v(\text{laptop}) = \$450$$

\$ 400

agent 2's
bidding
algorithm

result

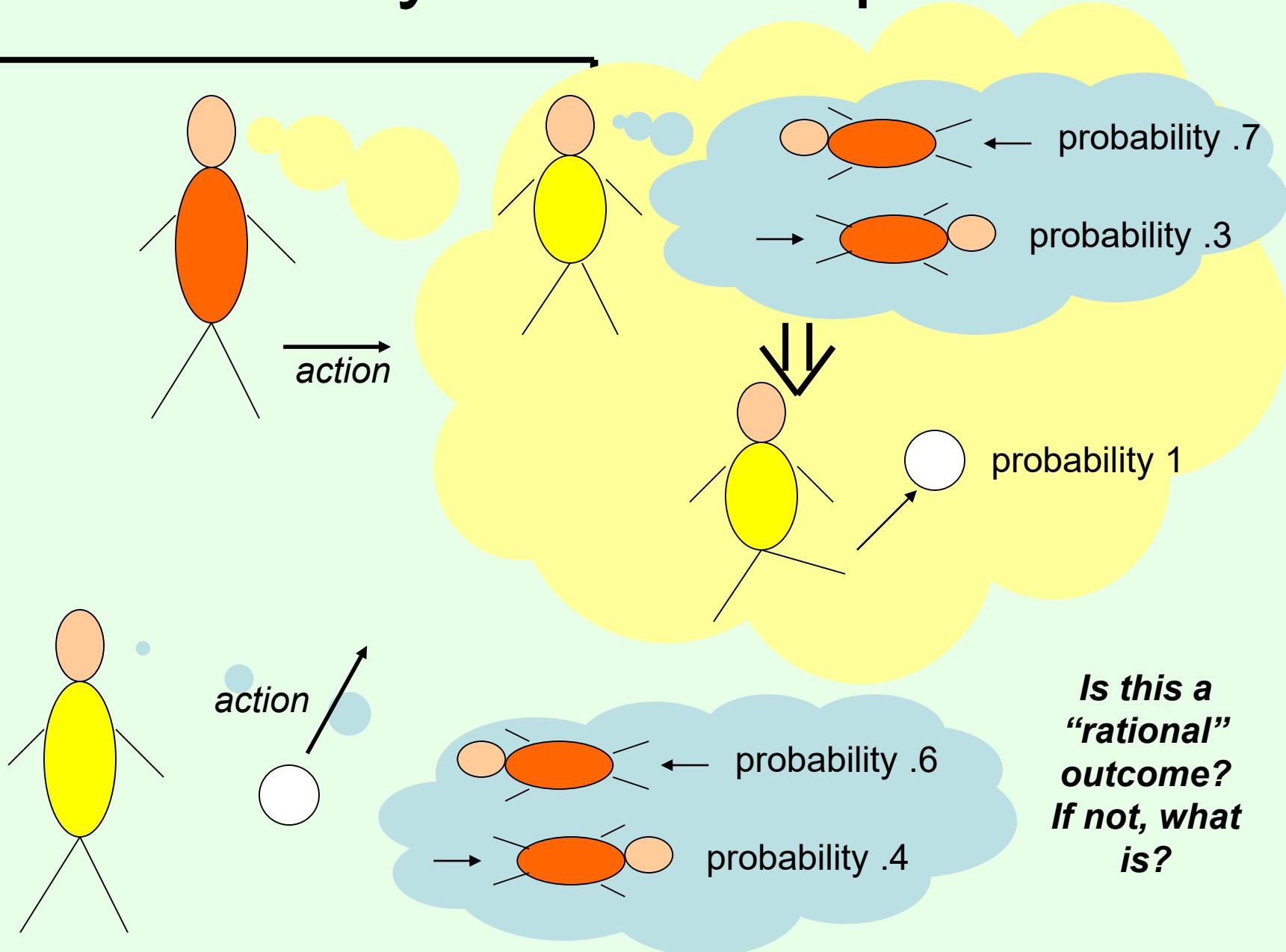
exchange
mechanism
(algorithm)

\$ 800

\$ 400

*Exchange mechanism designer
does not have direct access to
agents' private information*

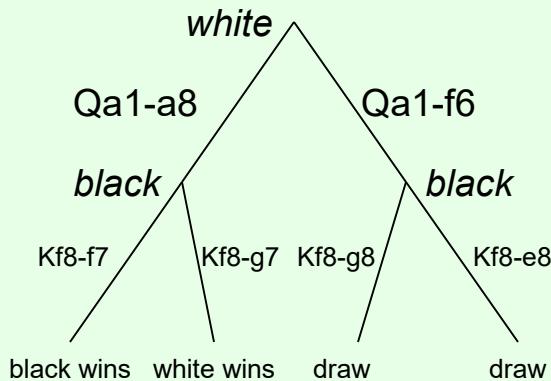
*Agents will selfishly respond to
incentives*


What is game theory?

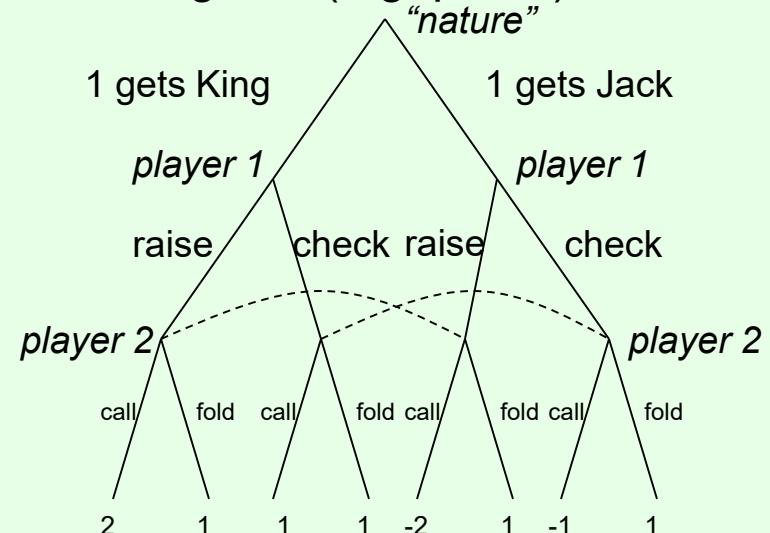
- “Game theory is the study of mathematical models of strategic interaction between rational decision-makers. It has applications in all fields of social science, as well as in logic and computer science. [...] Today, game theory applies to a wide range of behavioral relations, and is now an umbrella term for the science of logical decision making in humans, animals, and computers.” [\[Wikipedia, Aug. 2018\]](#)

What is game theory ...

- Game theory studies settings where multiple parties (**agents**) each have
 - different preferences (utility functions),
 - different actions that they can take
- Each agent's utility (potentially) depends on all agents' actions
 - What is optimal for one agent depends on what other agents do
 - Very circular!
- Game theory studies how agents can rationally form **beliefs** over what other agents will do, and (hence) how agents should **act**
 - Useful for acting as well as predicting behavior of others


Penalty kick example

Game playing & AI


perfect information games:

no uncertainty about the state of the game (e.g. tic-tac-toe, chess, Go)

imperfect information

games: uncertainty about the state of the game (e.g. poker)

- Optimal play: value of each node = value of optimal child for current player (backward induction, minimax)
- For chess and Go, tree is too large
 - Use other techniques (heuristics, limited-depth search, alpha-beta, deep learning, ...)
- Top computer programs better than humans in chess, ~~not yet in Go~~

- Player 2 **cannot distinguish** nodes connected by dotted lines
 - Backward induction fails; need more sophisticated game-theoretic techniques for optimal play
- Small poker variants can be solved optimally
- Humans still better than top computer programs at full-scale poker (at least most versions?)
- Top computer (heads-up) poker players are based on techniques for game theory

Real-world security applications

Milind Tambe's TEAMCORE group (USC)

Airport security

Where should checkpoints, canine units, etc. be deployed?

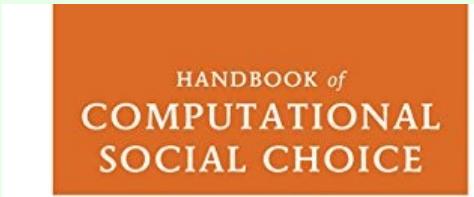
Federal Air Marshals

Which flights get a FAM?

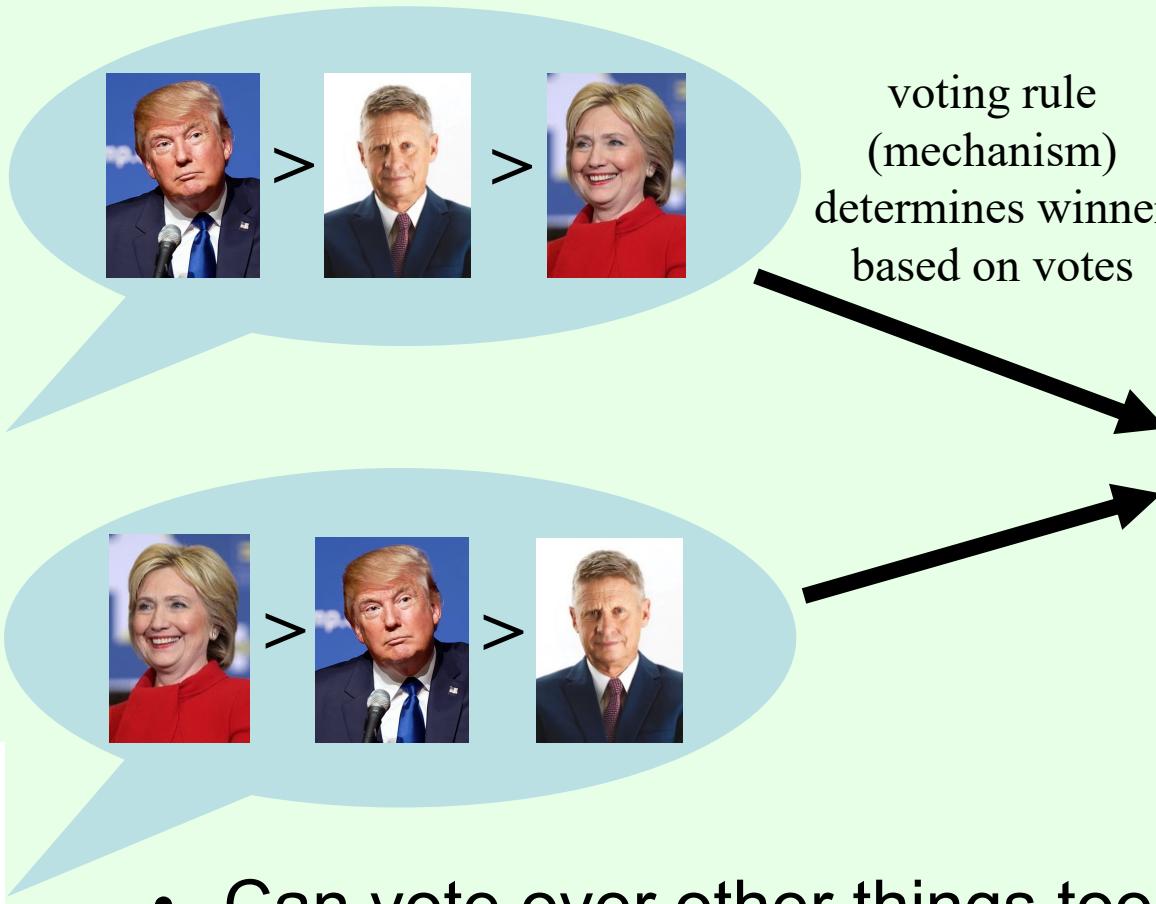
US Coast Guard

Which patrol routes should be followed?

Wildlife Protection

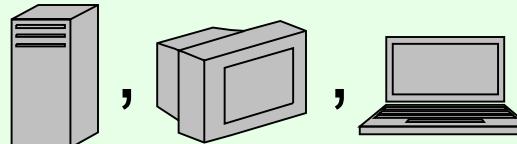

Where to patrol to catch poachers or find their snares?

Questions and problems in (computational) game theory


- How should we **represent** games (=strategic settings)?
 - Standard game-theoretic representations not always concise enough
- What does it mean to **solve** a game?
 - Solution concepts from game theory, e.g., Nash equilibrium
- How **computationally hard** is it to solve games?
 - Can we solve them approximately?
- Is there a role for **(machine) learning** in games?
- What types of **modeling** problems do we face when addressing real-world games?
 - E.g., applications in security
- ...

What is social choice?

- “Social choice theory or social choice is a theoretical framework for analysis of combining individual opinions, preferences, interests, or welfares to reach a *collective decision* or *social welfare* in some sense.” [\[Wikipedia, Aug. 2018\]](#)
- I.e., making decisions based on the preferences of multiple agents
- Largely, but not exclusively, focused on **voting**


Voting over outcomes

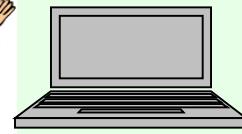
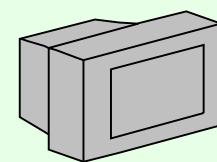
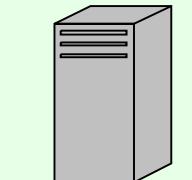
- Can vote over other things too
 - Where to go for dinner tonight, other joint plans, ...
- Many different rules exist for selecting the winner

Combinatorial auctions

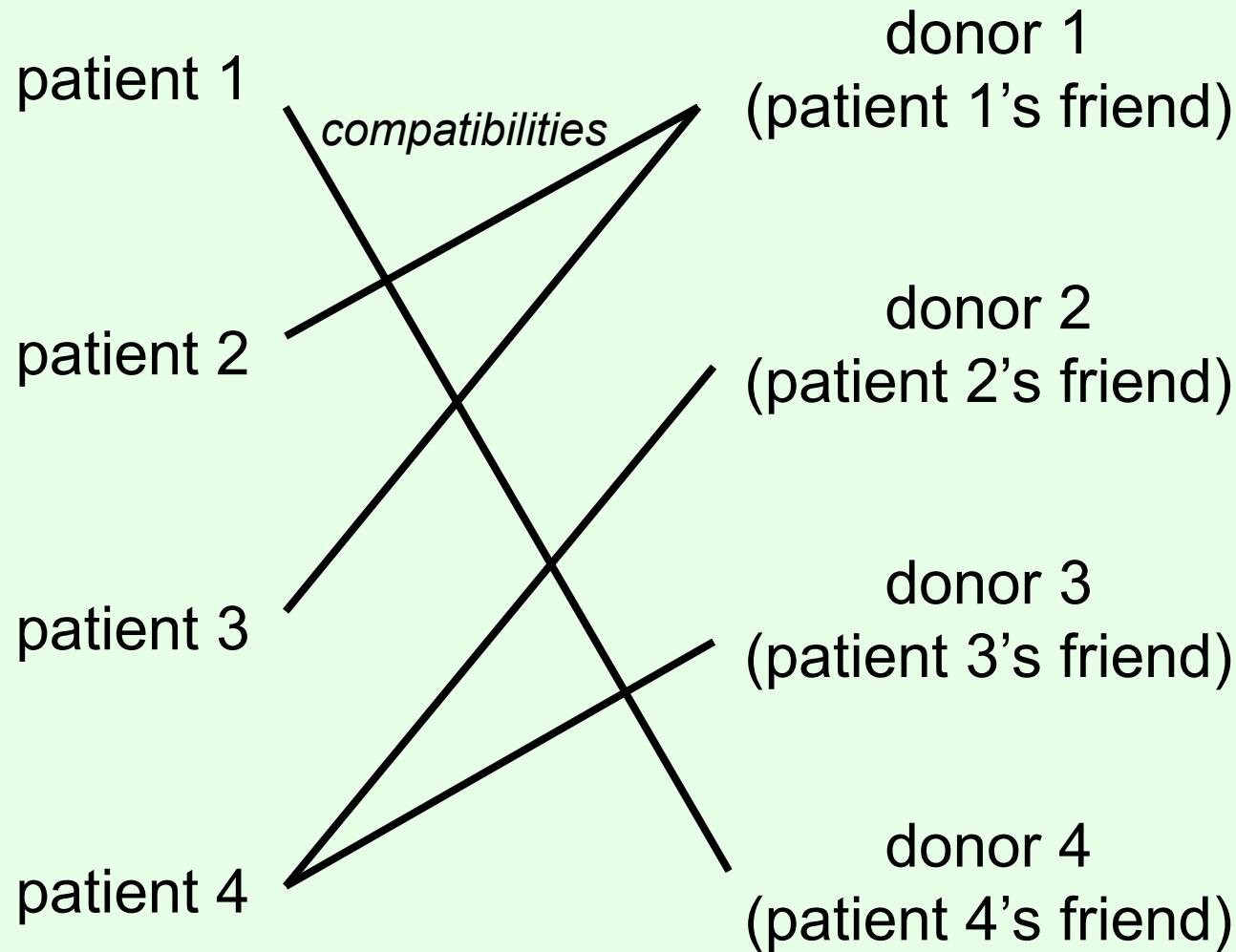
Simultaneously for sale:

bid 1

$$v(\text{server, monitor}) = \$500$$




bid 2

$$v(\text{laptop, monitor}) = \$700$$

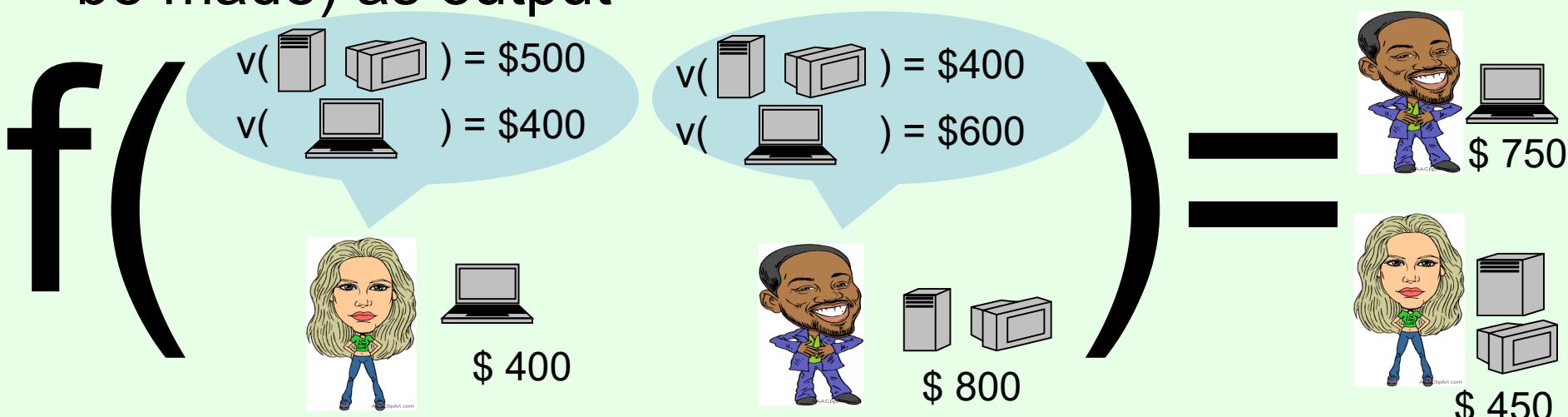

bid 3

$$v(\text{laptop}) = \$300$$

used in truckload transportation, industrial procurement, radio spectrum allocation, ...

Kidney exchange

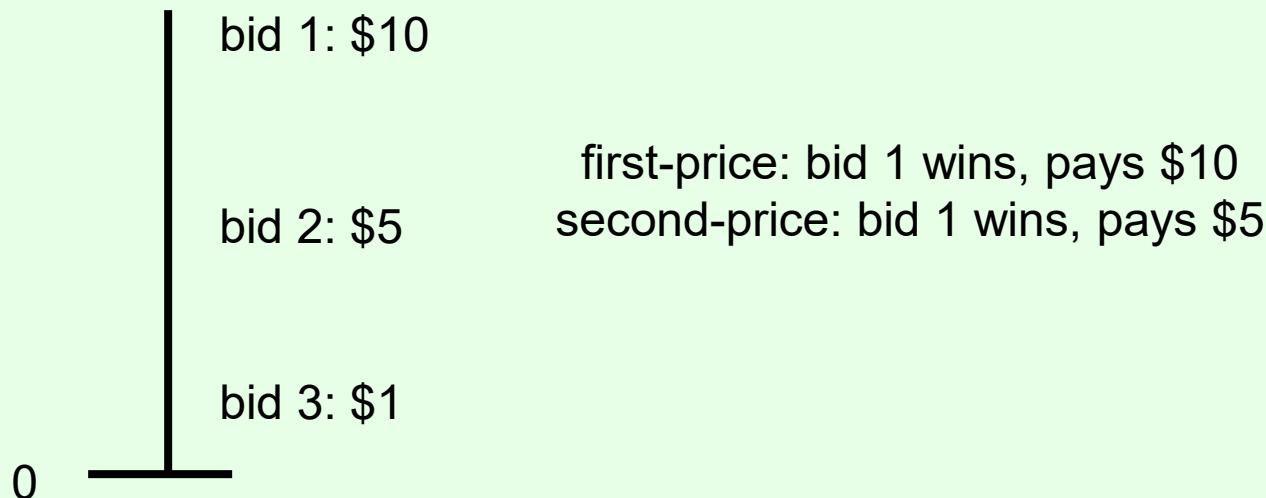
Problems in computational social choice


- **Winner determination** problem
 - For some voting rules, determining the winner is NP-hard
 - In a combinatorial auction, deciding which bids win is (in general) an NP-hard problem
- **Preference elicitation** (communication) problem
 - Can be impractical to communicate all of one's preferences (e.g., valuation for every bundle)
- **Mechanism design** problem
 - How do we get the bidders to behave so that we get good outcomes?
- These problems **interact** in nontrivial ways
 - E.g. limited computational or communication capacity can limit mechanism design options
 - ... but can perhaps also be used in a positive way

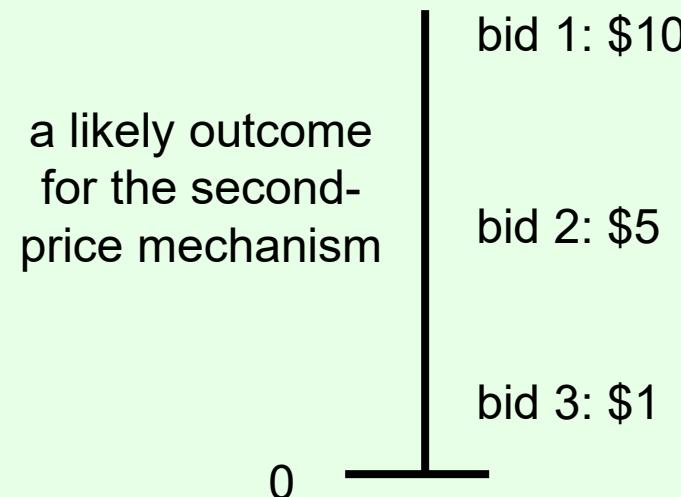
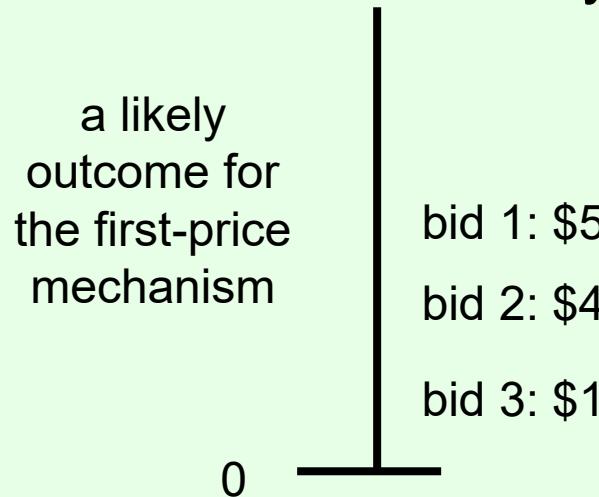
What is mechanism design?

- “Mechanism design is a field in economics and game theory that takes an engineering approach to designing economic mechanisms or incentives, toward desired objectives, in strategic settings, where players act rationally. [...] Two distinguishing features of [mechanism design] are:
 - that a game “designer” chooses the game structure rather than inheriting one
 - that the designer is interested in the game’s outcome
- [Wikipedia, Aug. 2018]

Mechanism design...


- Mechanism = rules of auction, exchange, ...
- A function that takes reported preferences (bids) as input, and produces outcome (allocation, payments to be made) as output

- The entire function f is one mechanism
- E.g., the mechanism from before: find allocation that maximizes (reported) utilities, distribute (reported) gains evenly
- Other mechanisms choose different allocations, payments



Example: (single-item) auctions

- **Sealed-bid** auction: every bidder submits bid in a sealed envelope
- **First-price** sealed-bid auction: highest bid wins, pays amount of own bid
- **Second-price** sealed-bid auction: highest bid wins, pays amount of second-highest bid

Which auction generates more revenue?

- Each bid depends on
 - bidder's **true valuation** for the item (utility = valuation - payment),
 - bidder's **beliefs** over what others will bid (\rightarrow game theory),
 - and... the **auction mechanism** used
- In a first-price auction, it does not make sense to bid your true valuation
 - Even if you win, your utility will be 0...
- In a second-price auction, (we will see later that) it always makes sense to bid your true valuation

Are there other auctions that perform better? How do we know when we have found the best one?

Mechanism design...

- Mechanism = game
- → we can use game theory to predict what will happen under a mechanism
 - if agents act strategically
- When is a mechanism “good”?
 - Should it result in outcomes that are good for the reported preferences, or for the true preferences?
 - Should agents ever end up lying about their preferences (in the game-theoretic solution)?
 - Should it always generate the best allocation?
 - Should agents ever burn money?(!?)
- Can we solve for the optimal mechanism?

Many uses of linear programming, mixed integer (linear) programming in this area

	Linear programming	Mixed integer linear programming
Game theory	Dominated strategies Minimax strategies Correlated equilibrium Optimal mixed strategies to commit to	Nash equilibrium Optimal mixed strategies to commit to in more complex settings
Social choice, expressive marketplaces	Winner determination in auctions, exchanges, ... with partially acceptable bids	Winner determination in: auctions, exchanges, ... without partially acceptable bids; Kemeny, Slater, other voting rules; kidney exchange
Mechanism design	Automatically designing optimal mechanisms that use randomization	Automatically designing optimal mechanisms that do not use randomization

Sponsored search / ad auctions

prediction markets proper scoring

All News Images Videos Shopping More Settings Tools

About 714,000 results (0.43 seconds)

A Political Prediction Market - Join PredictIt Today - predictit.org
Ad www.predictit.org/ ▾
Buy and sell shares on political outcomes with PredictIt. Let's Play Politics!
Predict & Trade · Safe and Secure · Unique Platform · Easy to Use
[About](#) · [Markets](#) · [Markets Analysis](#) · [Blog](#)

Scholarly articles for **prediction markets proper scoring** ✓

Prediction markets: Does money matter? - [Servan-Schreiber](#) - Cited by 337
Logarithmic markets coring rules for modular ... - [Hanson](#) - Cited by 275
... new understanding of **prediction markets** via no-regret ... - [Chen](#) - Cited by 81

[PDF] Geometric Charaterization of Proper Scoring Rules and Hanson ... - ... ✓
www.mit.edu/~pengshi/papers/2009-05-csurf-geometry.pdf ▾
One problem in implementing a **prediction market** is providing liquidity, and ... a proper scoring rule can be a tedious process, and the relationship between ...

[PDF] Proper Scoring Rules with Additional Properties - MIT ✓
www.mit.edu/~pengshi/papers/2009-04-psr-characterization.pdf ▾
of market-scoring rules and **prediction markets**. In this paper, we present a geometric interpretation to a previously known characterization of proper scoring ...

[PDF] Logarithmic Market Scoring Rules for Modular ... - [Robin Hanson](#) ✓
hanson.gmu.edu/mktscore.pdf ▾
by R Hanson - 2002 - Cited by 275 - Related articles
cannot even **predict** the direction in which others will disagree with them (Hanson, For a non-proper

- Choice of ads (if any) to show determined by:
 - Advertiser bid
 - Predicted likelihood of click

Learning & mechanism design

- Auctioneer may need to know **distribution over private information** to design optimal mechanism

- Learn from repeated play?
 - Exploration/exploitation tradeoffs?

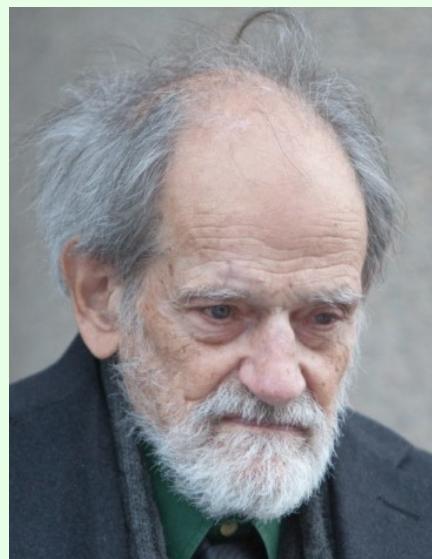
...

1

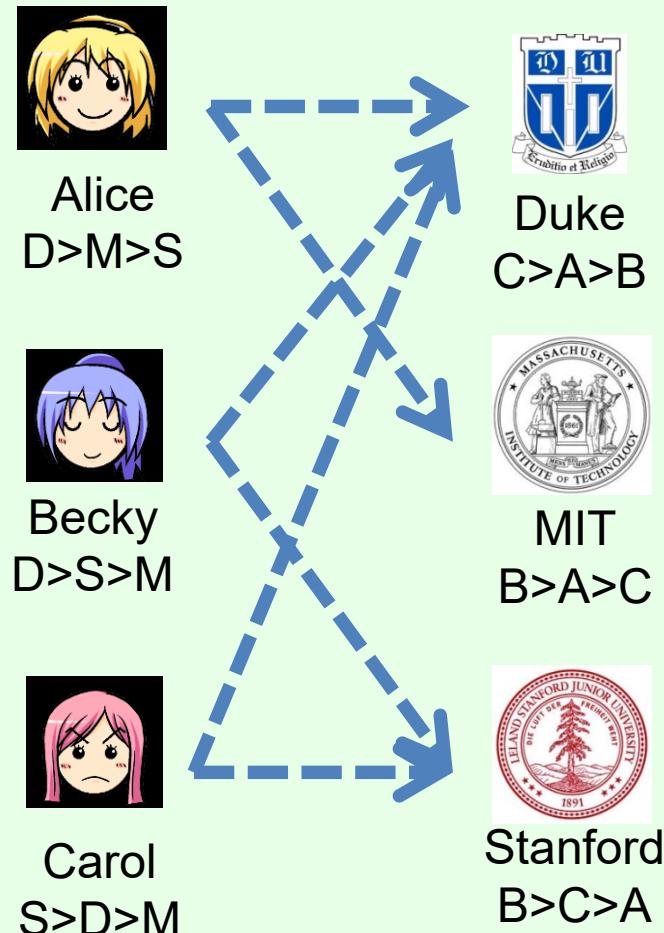
2

- Conversely: what if data for ML is **generated by strategic agents?**

- Agent being classified herself
 - Data from multiple agents used to find social-welfare maximizing decision



Deferred Acceptance algorithm


[Gale & Shapley 1962]

David Gale

Lloyd Shapley

Prediction markets

Search Markets

Markets

Analysis

About

Login

Sign Up

Closing Soon

Which party will win the 2020 U.S. presidential election?

Market Type: **Linked**

End Date: N/A

Status: Open

U.S. Elections

U.S. Politics

World

Contracts

Rules

Chart

Trade shares from this page by clicking any price in bold. For more information on an individual prediction, click on the name or image.

PREZPRTY20		Latest	Buy Yes	Sell Yes	Buy No	Sell No
	Democratic DEM.PREZPRTY20	58¢ 1¢	58¢	57¢	43¢	42¢
	Republican GOP.PREZPRTY20	44¢ 1¢	44¢	43¢	57¢	56¢
	Libertarian LIB.PREZPRTY20	3¢ NC	3¢	2¢	98¢	97¢
	Green GRN.PREZPRTY20	3¢ NC	3¢	2¢	98¢	97¢

The Disqus comment section is for informational purposes only and should not be relied upon when making any decision to buy or sell shares. PredictIt does not monitor, evaluate, or assess the accuracy of comments. PredictIt participants should seek out independent, verifiable information before making any investment decision.

mechanism

Highlight All

Match Case

Whole Words

1 of 8 matches

2018/8/27

Financial securities

- Tomorrow there must be one of
- Agent 1 offers \$5 for a security that pays off \$10 if or
- Agent 2 offers \$8 for a security that pays off \$10 if or
- Agent 3 offers \$6 for a security that pays off \$10 if
- Can we accept some of these at offers at no risk?

How to incentivize a weather forecaster

$$\begin{aligned} P(\text{Sun}) &= .5 \\ P(\text{Clouds}) &= .3 \\ P(\text{Clouds with lightning}) &= .2 \end{aligned}$$

$$\begin{aligned} P(\text{Sun}) &= .8 \\ P(\text{Clouds}) &= .1 \\ P(\text{Clouds with lightning}) &= .1 \end{aligned}$$

- Forecaster's bonus can depend on
 - Prediction
 - Actual weather on predicted day
- Reporting true beliefs should maximize expected bonus

Peer prediction

I had a good experience with product X.

5/5

I had an OK experience with product X.

4/5

Each forecaster's bonus depends only on how well it matches the other's

Other kinds of private information in auctions?

my quality estimate

$$q(\text{[laptop icon]}) = 90$$

my need

$$n(\text{[laptop icon]}) = 70$$

my quality estimate

$$q(\text{[laptop icon]}) = 80$$

my need

$$n(\text{[laptop icon]}) = 75$$

How should the auctioneer
use this information?

Why should economists care about computer science?

- Finding efficient allocations of resources is a (typically hard) computational problem
 - Sometimes beyond current computational techniques
 - If so, unlikely that any market mechanism will produce the efficient allocation (even without incentives issues)
 - Market mechanisms must be designed with computational limitations in mind
 - New algorithms allow new market mechanisms

Why should economists care about computer science...

- **Agents** also face difficult computational problems in participating in the market
 - Especially acting in a game-theoretically optimal way is often **computationally hard**
 - Game-theoretic predictions will not come true if they cannot be computed
 - Sometimes bad (e.g., want agents to find right bundle to trade)
 - Sometimes good (e.g., do not want agents to manipulate system)

Why should computer scientists care about economics?

- Economics provides high-value computational problems
- Interesting technical twist: no direct access to true input, must incentivize agents to reveal true input
- Conversely: Computer systems are increasingly used by multiple parties with different preferences (e.g., Internet)
- Economic techniques must be used to
 - predict what will happen in such systems,
 - design the systems so that they will work well
- Game theory is relevant for artificial intelligence
 - E.g., computer poker