
CS 590.2

Linear Programming Duality,
Normal Form Games,
and Minimax Theorem

Yu Cheng



Linear Programming Duality



Example linear program

maximize 3x + 2y
subject to

4x + 2y ≤ 16
x + 2y ≤ 8
x + y ≤ 5

x ≥ 0
y ≥ 0

• We make reproductions of 
two paintings

• Painting 1 sells for $30, painting 2 
sells for $20

• Painting 1 requires 4 units of blue, 1 
green, 1 red

• Painting 2 requires 2 blue, 2 green, 1 
red

• We have 16 units blue, 8 green, 5 red



Solving the linear program graphically
maximize 3x + 2y

subject to
4x + 2y ≤ 16
x + 2y ≤ 8
x + y ≤ 5

x ≥ 0
y ≥ 0 2
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optimal solution: 
x=3, y=2



Proving optimality
maximize 3x + 2y

subject to
4x + 2y ≤ 16
x + 2y ≤ 8
x + y ≤ 5

x ≥ 0
y ≥ 0

Recall: optimal solution: 
x=3, y=2

Solution value = 9+4 = 13

How do we prove this is 
optimal (without the 

picture)?



Proving optimality…
maximize 3x + 2y

subject to
4x + 2y ≤ 16
x + 2y ≤ 8
x + y ≤ 5

x ≥ 0
y ≥ 0

We can rewrite the blue 
constraint as 
2x + y ≤ 8

If we add the red constraint 
x + y ≤ 5 
we get 

3x + 2y ≤ 13
Matching upper bound!

(Really, we added .5 times the 
blue constraint to 1 times the 

red constraint)



Linear combinations of constraints
maximize 3x + 2y

subject to
4x + 2y ≤ 16
x + 2y ≤ 8
x + y ≤ 5

x ≥ 0
y ≥ 0

b(4x + 2y ≤ 16) + 
g(x + 2y ≤ 8) + 

r(x + y ≤ 5) 
=

(4b + g + r)x + 
(2b + 2g + r)y ≤ 
16b + 8g + 5r

4b + g + r must be at least 3
2b + 2g + r must be at least 2

Given this, minimize 16b + 8g + 5r



Using LP for getting the best 
upper bound on an LP

maximize 3x + 2y
subject to

4x + 2y ≤ 16
x + 2y ≤ 8
x + y ≤ 5

x ≥ 0
y ≥ 0

minimize 16b + 8g + 5r
subject to

4b + g + r ≥ 3
2b + 2g + r ≥ 2

b ≥ 0
g ≥ 0
r ≥ 0

the dual of the original program
• Duality theorem: any linear program has the same 

optimal value as its dual!



Another View

• Suppose Vince wants to buy paints from us.
• Pay $b for a unit of blue, $g for green, $r for red.
• We can choose to sell the paints, or produce

paintings and sell the paintings, or both.

• Painting 1: 4 blue, 1 green, 1 red, sells for $30
• Painting 2: 2 blue, 2 green, 1 red, sells for $20
• We have 16 units blue, 8 green, 5 red

b ≥ 0
g ≥ 0
r ≥ 0

4b + g + r ≥ 3
2b + 2g + r ≥ 2



Another View

• Suppose Vince wants to buy paints from us.
• Pay $b for a unit of blue, $g for green, $r for red.
• We can choose to sell the paints, or produce

paintings and sell the paintings, or both.

• Vince pays $(16b + 8g + 5r) in total.

• We have 16 units blue, 8 green, 5 red

b ≥ 0
g ≥ 0
r ≥ 0

4b + g + r ≥ 3
2b + 2g + r ≥ 2



Using LP for getting the best 
upper bound on an LP

maximize 3x + 2y
subject to

4x + 2y ≤ 16
x + 2y ≤ 8
x + y ≤ 5

x ≥ 0
y ≥ 0

minimize 16b + 8g + 5r
subject to

4b + g + r ≥ 3
2b + 2g + r ≥ 2

b ≥ 0
g ≥ 0
r ≥ 0

dualprimal



Duality
• Weak duality:

Optimal value of primal ≤ Optimal value of dual
– when primal is maximize(...) and dual is minimize(…)

• We can make $13 if we produce paintings
Vince should pay at least as much

• Any upper bound we get from the dual should be at
least the optimal value of the primal



Duality
• Strong Duality

Optimal value of primal = Optimal value of dual

• We can make $13 if we produce paintings
Vince should pay at least as much
Vince is a good negotiator and can buy all the
paints with $13.

• Any upper bound we get from the dual should be at
least the optimal value of the primal
Optimal dual solution gives a tight upper bound



Using LP for getting the best 
upper bound on an LP

maximize 3x + 2y
subject to

4x + 2y ≤ 16
x + 2y ≤ 8
x + y ≤ 5

x ≥ 0
y ≥ 0

minimize 16b + 8g + 5r
subject to

4b + g + r ≥ 3
2b + 2g + r ≥ 2

b ≥ 0
g ≥ 0
r ≥ 0

dualprimal



Normal-Form Games



Rock-paper-scissors

0, 0 -1, 1 1, -1
1, -1 0, 0 -1, 1
-1, 1 1, -1 0, 0

Row player
aka. player 1

chooses a row

Column player aka. 
player 2

(simultaneously) 
chooses a column

A row or column is 
called an action or 

(pure) strategy
Row player’s utility is always listed first, column player’s second

Zero-sum game: the utilities in each entry sum to 0 (or a constant)
Three-player game would be a 3D table with 3 utilities per entry, etc.



Matching pennies (~penalty kick)

1, -1 -1, 1
-1, 1 1, -1

L

R

L R



Two-player zero-sum games

0, 0 -1, 1 1, -1
1, -1 0, 0 -1, 1
-1, 1 1, -1 0, 0

• In a zero-sum game, payoffs in each entry sum to zero
– … or to a constant: recall that we can subtract a constant from 

anyone’s utility function without affecting their behavior
• What the one player gains, the other player loses

Note: a general-sum k-player 
game can be modeled as a zero-
sum (k+1)-player game by adding 

a dummy player absorbing the 
remaining utility, so zero-sum 
games with 3 or more players 

have to deal with the difficulties of 
general-sum games; this is why 
we focus on 2-player zero-sum 

games here.



Mixed strategies
• Mixed strategy for player i = probability 

distribution over player i’s (pure) strategies
• E.g.,1/3        , 1/3       , 1/3

• If we go second:
– Suppose we know the opponent’s mixed strategy, but not his

coin flips.
– What is the best strategy for us to play?

• If we go first:
– Assume opponent knows our mixed strategy (but not our

coin flips) and he plays his best-response.
– What is the best mixed strategy?



Best-response strategies
• Opponent plays rock 50% of the time and scissors 

50%
– Rock gives .5*0 + .5*1 = .5
– Paper gives .5*1 + .5*(-1) = 0
– Scissors gives .5*(-1) + .5*0 = -.5

• So the best response to this opponent strategy is to 
(always) play rock

• There is always some pure strategy that is a best 
response
– Suppose you have a mixed strategy that is a best response; 

then every one of the pure strategies that that mixed strategy 
places positive probability on must also be a best response



How to play matching pennies

• Assume opponent knows our mixed strategy
• If we play L 60%, R 40%:

– opponent will play R
– we get .6*(-1) + .4*(1) = -.2

• What’s optimal for us?  What about rock-paper-scissors?

1, -1 -1, 1

-1, 1 1, -1
L

R

L R

Us

Them



Matching pennies with a sensitive target

• If we play 50% L, 50% R, opponent will attack L
– We get .5*(1) + .5*(-2) = -.5

• What if we play 55% L, 45% R?
• Opponent has choice between

– L: gives them .55*(-1) + .45*(2) = .35
– R: gives them .55*(1) + .45*(-1) = .1

• We get -.35 > -.5

1, -1 -1, 1
-2, 2 1, -1

L

R

L R

Us

Them



Matching pennies with a sensitive target

• What if we play 60% L, 40% R?
• Opponent has choice between

– L: gives them .6*(-1) + .4*(2) = .2
– R: gives them .6*(1) + .4*(-1) = .2

• We get -.2 either way
• This is the maximin strategy

– Maximizes our minimum utility

1, -1 -1, 1

-2, 2 1, -1
L

R

L R

Us

Them



Let’s change roles

• Suppose we know their strategy
• If they play 50% L, 50% R, 

– We play L, we get .5*(1)+.5*(-1) = 0
• If they play 40% L, 60% R,

– If we play L, we get .4*(1)+.6*(-1) = -.2
– If we play R, we get .4*(-2)+.6*(1) = -.2

• This is the minimax strategy

1, -1 -1, 1
-2, 2 1, -1

L

R

L R

Us

Them

von Neumann’s minimax 
theorem [1928]: maximin 
value = minimax value

(~LP duality)



Minimax Theorem



Minimax theorem [von Neumann 1928]

• Maximin utility: maxσi mins-i ui(σi, s-i)
• Minimax utility: minσ-i maxsi ui(si, σ-i)

• Minimax theorem: 
maxσi mins-i ui(σi, s-i) = minσ-i maxsi ui(si, σ-i)

• Minimax theorem does not hold with pure 
strategies only (example?)

Notation: 
σi denotes a 

mixed strategy, 
si denotes a 

pure strategy



Solving for minimax strategies 
using linear programming

• maximize ui
• subject to 

Σsi psi = 1
for any s-i, Σsi psi ui(si, s-i) ≥ ui

Can also convert linear programs to two-player
zero-sum games, so they are equivalent



LP duality ~ minimax theorem

1, -1 -1, 1
-2, 2 1, -1

x

y

r b

maximize v

subject to

x - 2y >= v

-x + y >= v

x + y = 1

x, y >= 0

We play a mixed strategy (x, y)

If opponent plays left column: x - 2y
If opponent plays right column: -x + y



maximize v
subject to
x - 2y >= v
-x + y >= v
x + y = 1
x, y >= 0

LP duality ~ minimax theorem
r(x - 2y) +
b(-x + y)

=
(r - b)x +
(-2r + b)y

>= (r + b)v

(r + b)v <= (r - b)x + (-2r + b)y
When r + b = 1, r - b <= u, and -2r + b <= u

v <= ux + uy = u

minimize u
subject to
r - b <= u

-2r + b <= u
r + b = 1
r, b >= 0



LP duality ~ minimax theorem

1, -1 -1, 1
-2, 2 1, -1

x

y

r b

maximize v
subject to
x - 2y >= v
-x + y >= v
x + y = 1
x, y >= 0

minimize u
subject to
r - b <= u

-2r + b <= u
r + b = 1
r, b >= 0



LP duality ~ minimax theorem

1, -1 -1, 1
-2, 2 1, -1

x

y

r b

maximize v
subject to
x - 2y >= v
-x + y >= v
x + y = 1
x, y >= 0

minimize u
subject to
r - b <= u

-2r + b <= u
r + b = 1
r, b >= 0

maximin
=

minimax



General-sum games
• You could still play a minimax strategy in general-

sum games
– I.e., pretend that the opponent is only trying to hurt you

• But this is not rational:

0, 0 3, 1
1, 0 2, 1

• If Column was trying to hurt Row, Column would play Left, so 
Row should play Down

• In reality, Column will play Right (strictly dominant), so Row 
should play Up

• Is there a better generalization of minimax strategies in zero-
sum games to general-sum games?



Nash equilibrium 
[Nash 50]

• One mixed strategy for each player
• Every player knows the mixed

strategies of the other players
• No player has incentive to deviate


