

CS 590.2

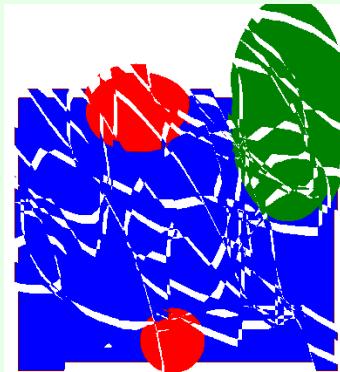
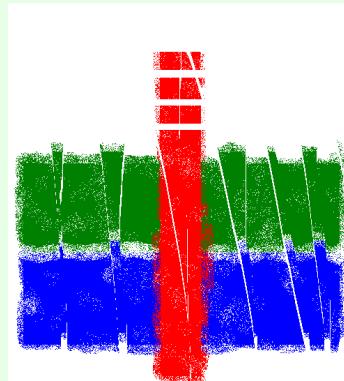
Linear Programming Duality,
Normal Form Games,
and Minimax Theorem

Yu Cheng

Linear Programming Duality

Example linear program

- We make reproductions of two paintings



$$\text{maximize } 3x + 2y$$

subject to

$$4x + 2y \leq 16$$

$$x + 2y \leq 8$$

$$x + y \leq 5$$

$$x \geq 0$$

$$y \geq 0$$

- Painting 1 sells for \$30, painting 2 sells for \$20
- Painting 1 requires 4 units of blue, 1 green, 1 red
- Painting 2 requires 2 blue, 2 green, 1 red
- We have 16 units blue, 8 green, 5 red

Solving the linear program graphically

maximize $3x + 2y$

subject to

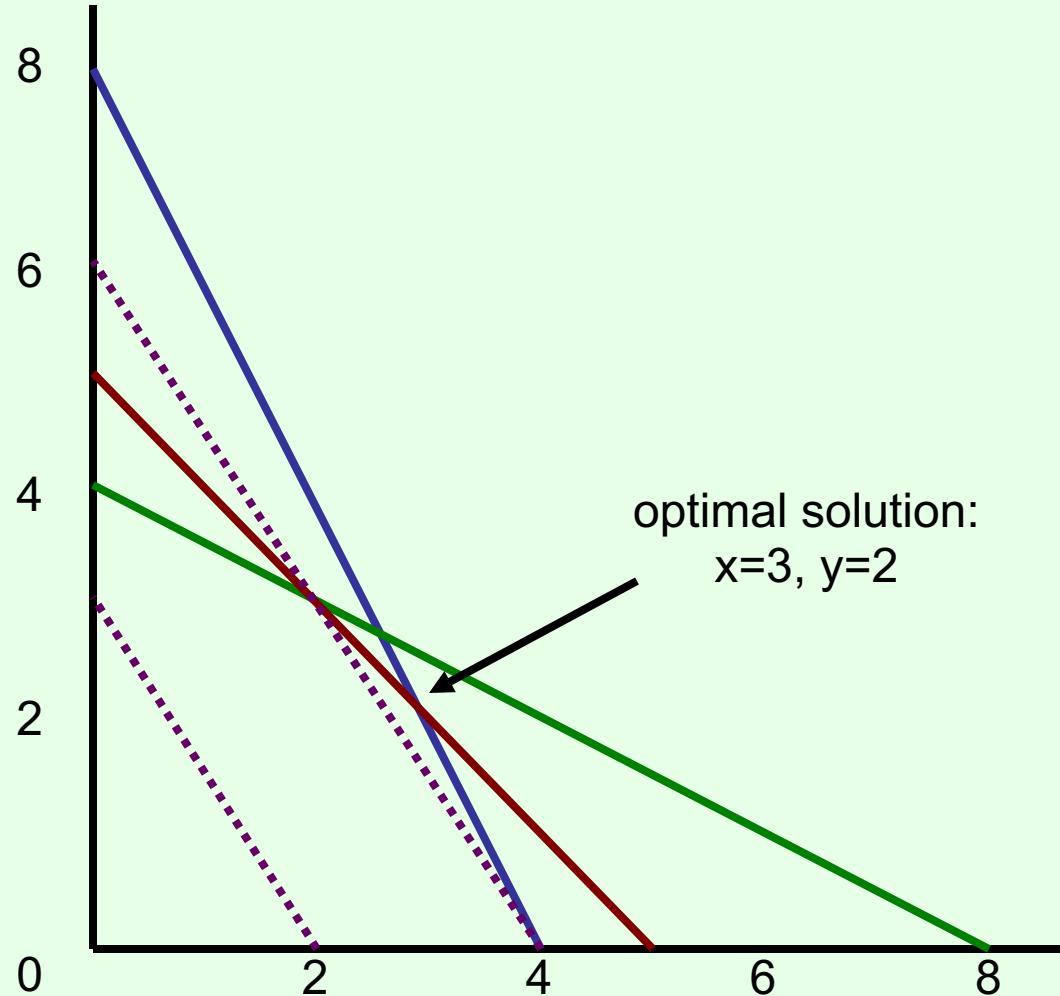
$$4x + 2y \leq 16$$

$$x + 2y \leq 8$$

$$x + y \leq 5$$

$$x \geq 0$$

$$y \geq 0$$



Proving optimality

maximize $3x + 2y$

subject to

$$4x + 2y \leq 16$$

$$x + 2y \leq 8$$

$$x + y \leq 5$$

$$x \geq 0$$

$$y \geq 0$$

Recall: optimal solution:

$$x=3, y=2$$

Solution value = $9+4 = 13$

How do we **prove** this is
optimal (without the
picture)?

Proving optimality...

maximize $3x + 2y$

subject to

$$4x + 2y \leq 16$$

$$x + 2y \leq 8$$

$$x + y \leq 5$$

$$x \geq 0$$

$$y \geq 0$$

We can rewrite the blue constraint as

$$2x + y \leq 8$$

If we add the red constraint

$$x + y \leq 5$$

we get

$$3x + 2y \leq 13$$

Matching upper bound!

(Really, we added .5 times the blue constraint to 1 times the red constraint)

Linear combinations of constraints

maximize $3x + 2y$

subject to

$$4x + 2y \leq 16$$

$$x + 2y \leq 8$$

$$x + y \leq 5$$

$$x \geq 0$$

$$y \geq 0$$

$$b(4x + 2y \leq 16) +$$

$$g(x + 2y \leq 8) +$$

$$r(x + y \leq 5)$$

=

$$(4b + g + r)x +$$

$$(2b + 2g + r)y \leq$$

$$16b + 8g + 5r$$

$4b + g + r$ must be at least 3

$2b + 2g + r$ must be at least 2

Given this, minimize $16b + 8g + 5r$

Using LP for getting the best upper bound on an LP

$$\text{maximize } 3x + 2y$$

subject to

$$4x + 2y \leq 16$$

$$x + 2y \leq 8$$

$$x + y \leq 5$$

$$x \geq 0$$

$$y \geq 0$$

$$\text{minimize } 16b + 8g + 5r$$

subject to

$$4b + g + r \geq 3$$

$$2b + 2g + r \geq 2$$

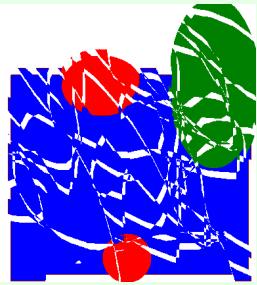
$$b \geq 0$$

$$g \geq 0$$

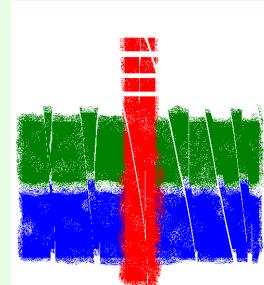
$$r \geq 0$$

the **dual** of the original program

- Duality theorem: any linear program has the same optimal value as its dual!



Another View

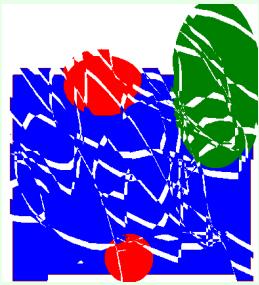


- Painting 1: 4 blue, 1 green, 1 red, sells for \$30
- Painting 2: 2 blue, 2 green, 1 red, sells for \$20
- We have 16 units blue, 8 green, 5 red

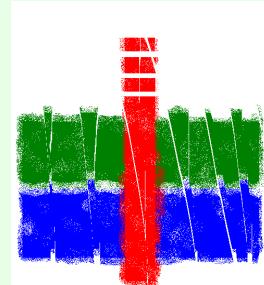
- Suppose Vince wants to buy paints from us.
- Pay $\$b$ for a unit of blue, $\$g$ for green, $\$r$ for red.
- We can choose to sell the paints, or produce paintings and sell the paintings, or both.

$$\begin{aligned}b &\geq 0 \\g &\geq 0 \\r &\geq 0\end{aligned}$$

$$\begin{aligned}4b + g + r &\geq 3 \\2b + 2g + r &\geq 2\end{aligned}$$



Another View



- Vince pays $\$(16b + 8g + 5r)$ in total.
- We have 16 units blue, 8 green, 5 red
 - Suppose Vince wants to buy paints from us.
 - Pay $\$b$ for a unit of blue, $\$g$ for green, $\$r$ for red.
 - We can choose to sell the paints, or produce paintings and sell the paintings, or both.

$$b \geq 0$$

$$g \geq 0$$

$$r \geq 0$$

$$4b + g + r \geq 3$$

$$2b + 2g + r \geq 2$$

Using LP for getting the best upper bound on an LP

$$\text{maximize } 3x + 2y$$

subject to

$$4x + 2y \leq 16$$

$$x + 2y \leq 8$$

$$x + y \leq 5$$

$$x \geq 0$$

$$y \geq 0$$

primal

$$\text{minimize } 16b + 8g + 5r$$

subject to

$$4b + g + r \geq 3$$

$$2b + 2g + r \geq 2$$

$$b \geq 0$$

$$g \geq 0$$

$$r \geq 0$$

dual

Duality

- Weak duality:
 - Optimal value of primal \leq Optimal value of dual
 - when primal is maximize(...) and dual is minimize(...)
- We can make \$13 if we produce paintings
Vince should pay at least as much
- Any upper bound we get from the dual should be at least the optimal value of the primal

Duality

- Strong Duality
 - Optimal value of primal = Optimal value of dual
- We can make \$13 if we produce paintings
Vince should pay at least as much
Vince is a good negotiator and can buy all the paints with \$13.
- Any upper bound we get from the dual should be at least the optimal value of the primal
Optimal dual solution gives a **tight upper bound**

Using LP for getting the best upper bound on an LP

$$\text{maximize } 3x + 2y$$

subject to

$$4x + 2y \leq 16$$

$$x + 2y \leq 8$$

$$x + y \leq 5$$

$$x \geq 0$$

$$y \geq 0$$

primal

$$\text{minimize } 16b + 8g + 5r$$

subject to

$$4b + g + r \geq 3$$

$$2b + 2g + r \geq 2$$

$$b \geq 0$$

$$g \geq 0$$

$$r \geq 0$$

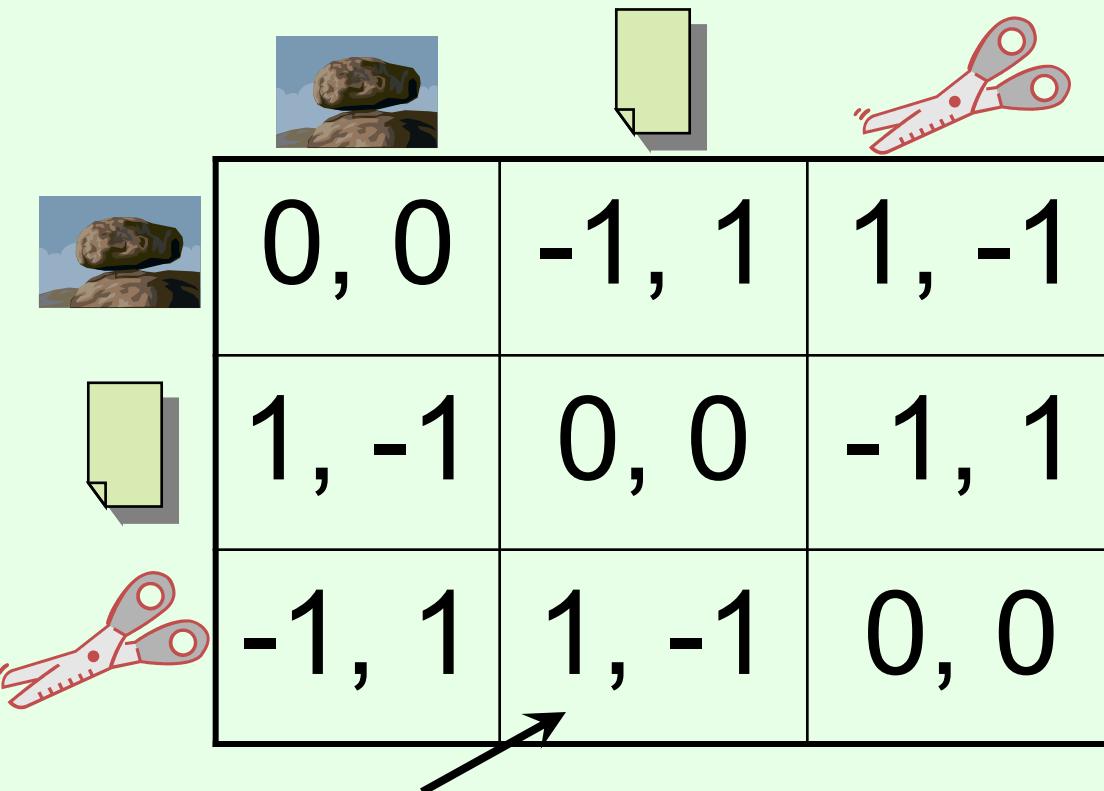
dual

Normal-Form Games

Rock-paper-scissors

Column player aka.
player 2

(simultaneously)
chooses a column



A 3x3 matrix game representing Rock-paper-scissors. The columns are labeled "Rock", "Paper", and "Scissors". The rows are labeled "Rock", "Paper", and "Scissors". The payoffs are listed as (Row Player, Column Player):

Rock vs Rock	Rock vs Paper	Rock vs Scissors
Paper vs Rock	Paper vs Paper	Paper vs Scissors
Scissors vs Rock	Scissors vs Paper	Scissors vs Scissors

Row player aka. player 1 chooses a row

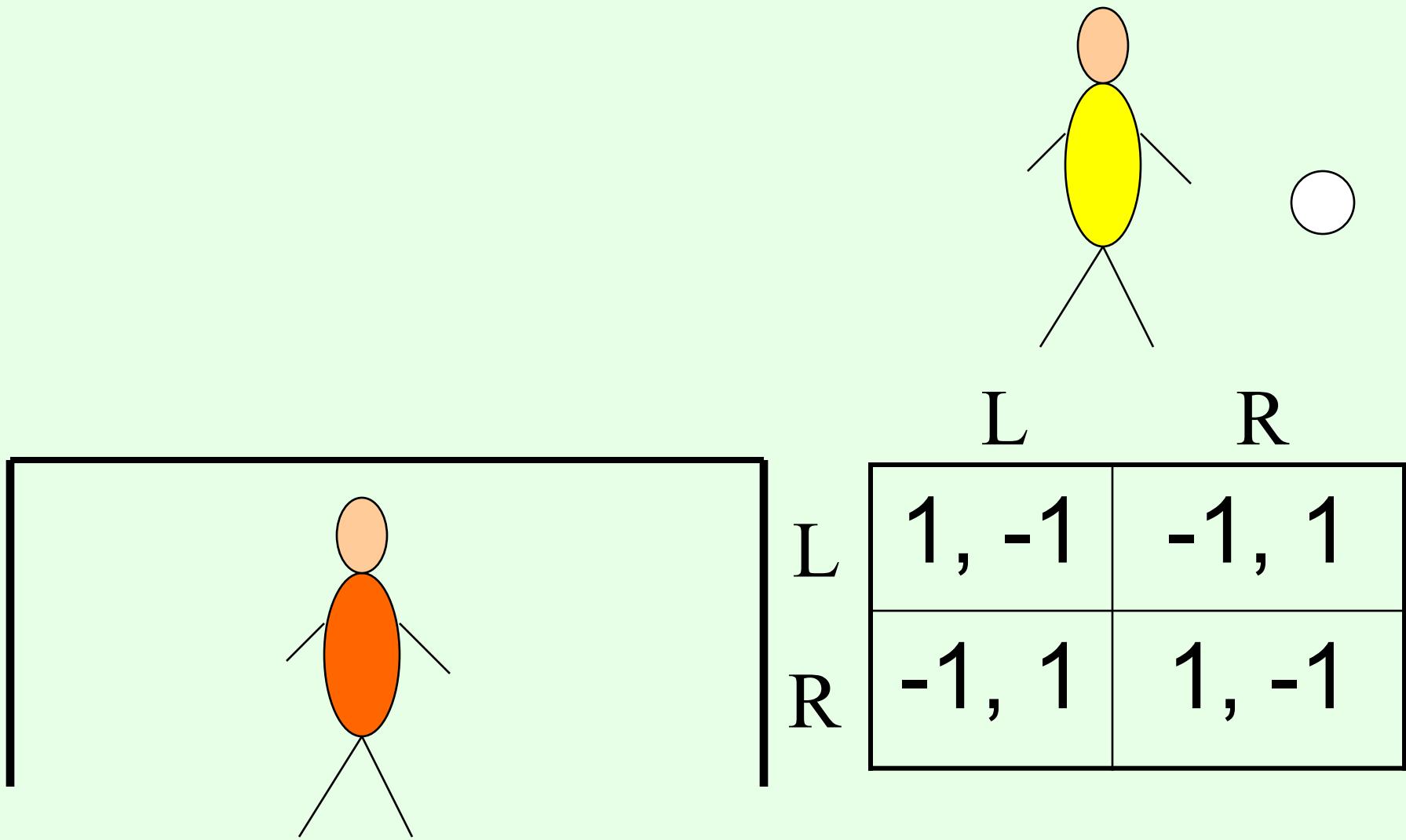
Column player aka. player 2 chooses a column

A row or column is called an **action** or (pure) strategy

Row player's utility is always listed first, column player's second

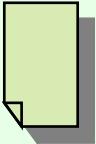
Zero-sum game: the utilities in each entry sum to 0 (or a constant)
Three-player game would be a 3D table with 3 utilities per entry, etc.

Matching pennies (~penalty kick)



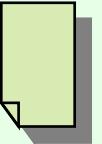
Two-player zero-sum games

- In a zero-sum game, payoffs in each entry sum to zero
 - ... or to a constant: recall that we can subtract a constant from anyone's utility function without affecting their behavior
- What the one player gains, the other player loses

	0, 0	-1, 1
	1, -1	0, 0
	-1, 1	1, -1

Note: a general-sum k -player game can be modeled as a zero-sum $(k+1)$ -player game by adding a dummy player absorbing the remaining utility, so zero-sum games with 3 or more players have to deal with the difficulties of general-sum games; this is why we focus on 2-player zero-sum games here.

Mixed strategies

- Mixed strategy for player i = probability distribution over player i 's (pure) strategies
- E.g., $1/3$, $1/3$ , $1/3$
- If we go second:
 - Suppose we know the opponent's mixed strategy, but not his coin flips.
 - What is the best strategy for us to play?
- If we go first:
 - Assume opponent knows our mixed strategy (but not our coin flips) and he plays his best-response.
 - What is the best mixed strategy?

Best-response strategies

- Opponent plays rock 50% of the time and scissors 50%
 - Rock gives $.5*0 + .5*1 = .5$
 - Paper gives $.5*1 + .5*(-1) = 0$
 - Scissors gives $.5*(-1) + .5*0 = -.5$
- So the best response to this opponent strategy is to (always) play rock
- There is always some **pure** strategy that is a best response
 - Suppose you have a mixed strategy that is a best response; then every one of the pure strategies that that mixed strategy places positive probability on must also be a best response

How to play matching pennies

		<i>Them</i>	
		L	R
<i>Us</i>	L	1, -1	-1, 1
	R	-1, 1	1, -1

- Assume opponent **knows** our **mixed** strategy
- If we play L 60%, R 40%:
 - opponent will play R
 - we get $.6*(-1) + .4*(1) = -.2$
- What's optimal for us? What about rock-paper-scissors?

Matching pennies with a sensitive target

		<i>Them</i>	
		L	R
<i>Us</i>	L	1, -1	-1, 1
	R	-2, 2	1, -1

- If we play 50% L, 50% R, opponent will attack L
 - We get $.5*(1) + .5*(-2) = -.5$
- What if we play 55% L, 45% R?
- Opponent has choice between
 - L: gives them $.55*(-1) + .45*(2) = .35$
 - R: gives them $.55*(1) + .45*(-1) = .1$
- We get $.35 > -.5$

Matching pennies with a sensitive target

		<i>Them</i>	
		L	R
<i>Us</i>	L	1, -1	-1, 1
	R	-2, 2	1, -1

- What if we play 60% L, 40% R?
- Opponent has choice between
 - L: gives them $.6*(-1) + .4*(2) = .2$
 - R: gives them $.6*(1) + .4*(-1) = .2$
- We get $.2$ either way
- This is the **maximin** strategy
 - Maximizes our minimum utility

Let's change roles

		<i>Them</i>	
		L	R
<i>Us</i>	L	1, -1	-1, 1
	R	-2, 2	1, -1

- Suppose **we** know **their** strategy
- If they play 50% L, 50% R,
 - We play L, we get $.5*(1)+.5*(-1) = 0$
- If they play 40% L, 60% R,
 - If we play L, we get $.4*(1)+.6*(-1) = -.2$
 - If we play R, we get $.4*(-2)+.6*(1) = -.2$
- This is the **minimax** strategy

von Neumann's minimax theorem [1928]: maximin value = minimax value (~LP duality)

Minimax Theorem

Minimax theorem [von Neumann 1928]

- Maximin utility: $\max_{\sigma_i} \min_{s_{-i}} u_i(\sigma_i, s_{-i})$
- Minimax utility: $\min_{\sigma_{-i}} \max_{s_i} u_i(s_i, \sigma_{-i})$

Notation:

σ_i denotes a mixed strategy,
 s_i denotes a pure strategy

- Minimax theorem:

$$\max_{\sigma_i} \min_{s_{-i}} u_i(\sigma_i, s_{-i}) = \min_{\sigma_{-i}} \max_{s_i} u_i(s_i, \sigma_{-i})$$

- Minimax theorem does not hold with pure strategies only (example?)

Solving for minimax strategies using linear programming

- maximize u_i
- subject to

$$\sum_{s_i} p_{s_i} = 1$$

$$\text{for any } s_{-i}, \sum_{s_i} p_{s_i} u_i(s_i, s_{-i}) \geq u_i$$

Can also convert linear programs to two-player zero-sum games, so they are equivalent

LP duality ~ minimax theorem

	r	b
x	1, -1	-1, 1
y	-2, 2	1, -1

We play a mixed strategy (x, y)

If opponent plays left column: $x - 2y$

If opponent plays right column: $-x + y$

maximize v

subject to

$x - 2y \geq v$

$-x + y \geq v$

$x + y = 1$

$x, y \geq 0$

LP duality ~ minimax theorem

maximize v	$r(x - 2y) +$	minimize u
subject to	$b(-x + y)$	subject to
$x - 2y \geq v$	$=$	$r - b \leq u$
$-x + y \geq v$	$(r - b)x +$	$-2r + b \leq u$
$x + y = 1$	$(-2r + b)y$	$r + b = 1$
$x, y \geq 0$	$\geq (r + b)v$	$r, b \geq 0$

$$(r + b)v \leq (r - b)x + (-2r + b)y$$

When $r + b = 1$, $r - b \leq u$, and $-2r + b \leq u$

$$v \leq ux + uy = u$$

LP duality ~ minimax theorem

	r	b
x	1, -1	-1, 1
y	-2, 2	1, -1

maximize v

subject to

$$x - 2y \geq v$$

$$-x + y \geq v$$

$$x + y = 1$$

$$x, y \geq 0$$

minimize u

subject to

$$r - b \leq u$$

$$-2r + b \leq u$$

$$r + b = 1$$

$$r, b \geq 0$$

LP duality ~ minimax theorem

	r	b
x	1, -1	-1, 1
y	-2, 2	1, -1

maximize v

subject to

$$x - 2y \geq v$$

$$-x + y \geq v$$

$$x + y = 1$$

$$x, y \geq 0$$

minimize u

subject to

$$r - b \leq u$$

$$-2r + b \leq u$$

$$r + b = 1$$

$$r, b \geq 0$$

← maximin

=

minimax →

General-sum games

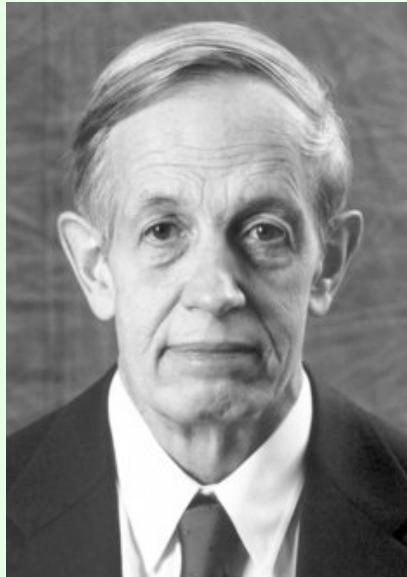
- You could still play a minimax strategy in general-sum games
 - I.e., pretend that the opponent is only trying to hurt you
- But this is not rational:

0, 0	3, 1
1, 0	2, 1

- If Column was trying to hurt Row, Column would play Left, so Row should play Down
- In reality, Column will play Right (strictly dominant), so Row should play Up
- Is there a better generalization of minimax strategies in zero-sum games to general-sum games?

Nash equilibrium

[Nash 50]



- One mixed strategy for each player
- Every player knows the mixed strategies of the other players
- No player has incentive to deviate

