
Abstract

Ray shooting and Parametric Search *

Pankaj K. Agarwalt and Jiii Matou5ek$

We present efficient algorithms for the ray shooting prob-
lem: Given a collection 17of obiects in IIRd, build a data
structure, so that one can quic~-y determine the first ob-
ject of 1?hit by a query ray. Using the parametric search
technique, we reduce thk problem to the segment ernpt:-
ness problem. For various ray shooting problems, we
achieve space/query time tradeoffs of the following type:
for some integer b and a parameter m (n < m < nb)
the queries are answered in time 0(--& logO(l) n), With.
O(ml+’) space and preprocessing time (e >0 is arbitrar-
ily small but fixed). We get b = [d/2] for ray shooting
in a convex d-poly-tope defined as an intersection of n

half-spaces, b = d- fo; an arrangement of n hyperplanes
in R d and b = 3 for an arrangement of n half-planes in
R3. Next we apply the ray shooting algorithms to sev-
eral problems including reporting k-nearest (or k-farthest)
neighbors, hidden surface removal, computing convex lay-
ers, and computing levels in arrangements of planes. All
the algorithms described here either give the first non-
trivial solutions to these problems, or improve the previ-
ously best known solutions significantly.

*Work by the first author has been supported by National

Science Foundation Grant CCR-91-06514.

t Computer Science Department, Duke University, Durham,

NC 27706.
$Dep=tment of Applied Mathematics, Charles University,

Praha.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice ia given

that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or 10 republish, requires a fee

and/or specific permission.

24th ANNUAL ACM STOC - 5/92/VICTORIA, B. C., CANADA
~ 1992 ACM 0-89791-51 2.7\92/0004/05J 7...$J .5r3

1 Introduction

Consider the following ray shooting problem: Given
a collection I’ of n objects in IRd, build a data struc-

tures, so that one can quickly determine the jirst ob-

ject of r intersected by a query ray.

The ray shooting problem has received a lot of
attention in the last few years because of its ap-

plications in graphics and other geometric problems

[11, 20, 1, 5, 7]. But most of the work done so far

has been for the planar case where 17is a collection of

line segments in IR2. Chazelle and Guibas proposed

an optimal algorithm for the special case where 17is

the boundary of a simple polygon [11]. Their algo-

rithm answers a ray shooting query in O(log n) time

using O(n) space. If I’ is a collection of arbitrary seg-

ments in the plane, the best known algorithm answers

a ray shooting query in time 0(~ logO(l) n) using

O(rnl+’) space and preprocessing [1, 5]. Although

no lower bound is known for this case, it is conjec-

tured that this bound is close to optimal. But the

problem is far from being solved in three and higher

dimensions. For example, no efficient ray shooting al-

gorithm haa been known for a convex d-polytope for

d > 3. Even in IR3, non-trivial solutions have been

obtained only very recently (cf. [5, 7]).

In this paper, we present ray shooting algorithms

for several cases in higher dimensions (d z 3), includ-

ing a convex polytope, a collection of n hyperplanes

in IRd, and a collection of n half-planes in R3. We will

use a unified approach for all cases, which is, roughly

speaking, a binary search along the query ray p. In

order to make this approach work, we need to handle

two problems: (i) Perform a binary search without

computing all intersection points of p and the objects

of I’, and (ii) Given a point z c p, determine whether

* Throughout this paper, e denotes an arbitrarily small pos-

itive constant. The multiplicative constants in the asymptotic

bounds may depend on e.

517

the first intersection point of r and p lies before or

after x.

To handle the first problem we perform an implicit

binary search using the parametric search technique

of Megiddo [25], and, to handle the second problem,

we use suitable range searching structures for detect-

ing an intersection between p and the objects of I’.

Our approach can be easily extended to report the

first k objects hit by the query ray.

The range searching algorithms, we have at dis-

posal, usually admit time/space tradeoffs: the more

space (and preprocessing time) we use, the faster the

queries can be answered. Such a tradeoff then trans-

fers to the ray shooting results. A usual form of this

tradeoff is the following: There are two fixed integers

b, c (specific to the considered problem), such that

with O(rnl+S) space and preprocessing time, where

n < m < nb, a query can be answered in time

0(~ log’ n). Note that since we require m ~ n, the

smallest amount of space we consider in this tradeoff

is O(n l+C). Hence the loge n factor plays a role only

when m is close to nb; actually it expresses the query

complexity for the maximum permissible amount of

space. For the sake of brevity, we just say that such a

problem admits a d andard tradeofl with certain value

of b. It is understood that c is always a (reasonably

small) constant.

We first describe the general ray shooting algo-

rithm (Section 2), and then apply this technique to

obtain fast procedures for the following specific in-

st antes (Section 3): H yperplanes in Rd. Previ-

ously, efficient solutions were known only for d <3 [5].

Moreover, they did not support insertion/deletion of

planes for d = 3. We obtain a data structure with

query time 0(* log4 n).

Convex d-polytope. We assume that the poly-

topes is defined as the intersection of n half-spaces.

For d = 2 a straight-forward binary search can an-

swer a ray shooting query in O(log n) time, and for

d = 3 one can use Dobkin-Kirkpatrick hierarchical

representation of a 3-polytope to obtain an optimal

algorithm [17]. But for d > 3, Dobkin-Kirkpatrick

hierarchical representation does not work, and no ef-
ficient algorithm is known for ray shooting in higher

dimensions. Even in 1113no efficient ray shooting al-

gorithm is known if the polytope P changes dynam-

ically. We present a data structure with query time

0(“m*j- log5 n).

Half-planes in R3, The previously best known

result answered a query in time 0(“~~~fi=) using

O(ml+’) space and preprocessing [5]. We present a

data structure with query time O(* log3 n).

Next, we apply the above ray shooting algorithms

for various other problems:

Proximity problems. Clarkson showed that if we

allow O(n [df21 +’) space, a nearest or farthest neigh-

bor of a query point in S can be computed in time

O(log n). But it neither admits space/query time

tradeoff nor allows insertion/deletions of points. Re-

cently Mulmuley showed that a set of n points can

be stored into a data structure of size O(n[d/21 f’),

so that k-nearest neighbors can be reported in ex-

pected time O(k log n), and a random sequence of in-

sertions/deletions can be performed in O(n [df21 - l+C)

amortized time with high probability. But his alg~

rithm does not perform well on an arbitrary sequence

of insertions/deletions. Moreover, it also does not

admit space query time tradeoff.

By a well-known reduction, we reduce the problem

to a suitable ray shooting algorithm which yields a

procedure that can process a set of n points in Rd into

a data structure so that the nearest or the farthest

neighbor of a query point can be computed quickly;

we get a standard tradeoff with b = [d/21 [18]. It

can also report the k-nearest (or k-farthest) neigh-

bors, for any given k < n, at an additional cost of

k log2 n in the query time. As usual, the data struc-

ture can be updated in O(m/nl-’) amortized time

per insert/delete operation. (Section 4.)

Hidden surface removal. Given a set T of n non-

intersecting triangles in lR3 and a view point z = +co,

compute the visibility map of T, that is, the sub-

division of the viewing plane so that the same tri-

angle is visible from all the points of a face. The

goal is to come up with an “output-sensitive” algo-

rithm. Although there have been several output sen-

sitive algorithms for special cases in the last few years

[28, 5, 8, 7], only very recently de Berg et al. [7] pre-

sented an output-sensitive algorithm for the general

case, whose time complexity is O(nl+e W+ k), where

k is the output size. We improve the running time of

their algorithm to 0(n213+’ k213 + nl+S). (Section 5.)

Convex layers in 3D. Given a set S of n points
in IR3, the convex layers of S are defined iteratively

as follows: Compute the convex hull of S, delete the

points of S lying on the convex hull, and repeat the

same step until S becomes empty. Although an opti-

mal O(n log n) time algorithm haa been known for a

long time in the plane [9], the best known algorithm

in 3D runs in time 0(n3i2 log n). We present an algo-

rithm for computing convex layers of n points in R3,

whose time complexity is O(nl+:). (Section 6.)

518

Levels in arrangements of planes in 3D. Let H

be a set of n planes in R3. For an integer k < n, the

k-level in arrangement of H is the closure of faces

~ of arrangement of H, A(H), such that k planes

of H lie strictly above ~. Edelsbrunner and Welzl

[19] presented an algorithm for computing the k-level

in arrangements of n lines in the plane, whose time

complexity was O(n log n + b log2 n), where b is the

size of the level.

We present an output-sensitive algorithm for com-

puting a level in .4(H), whose time complexity is

O((b + n)rf), where b is the size of the k-level. This

is the first known output-sensitive algorithm for com-

puting a level in 3D. (Section 7.)

Our algorithm for computing a level also yields an

O(nl+’ k) time deterministic algorithm for computing

the kih-order Voronoi diagram of a set of n points in

the plane.

New developments. Recently, a further progress
was made in the construction of (static) range search-

ing algorithms (see [23] for simplex range searching

algorithms and multilevel range searching structures

and [30] for half-space range reporting with polylog-

arithmic query time). As a result, the ng factors ap-

pearing in the complexity bounds for our static ray

shooting algorithms can be replaced by polylogarith-

mic factors. Also, in the case of ray shooting in a

convex polytope, one can remove some of the extra

logarithmic factors in the query time arising by a

straightforward application of the parametric search

method, see [24, 30].

2 Ray Shooting Using Para-

metric Search

It will be convenient to formulate the ray shooting

problem in a reasonably general setting. Let ~ be

a class of (topologically closed) geometric objects in

Rd (in the examples we consider, these will be hy-

perplanes or parts of them), and let r be some set

of n objects of G. Further let 7? be a set of admis-

sible rays. Let o(p) denote the origin point of a ray

p. The points of every ray will be ordered increas-

ingly along the ray starting from its origin, i.e, for

P, 9 E P we say P < q if o(p) is closer to p than to
q. For a ray p c 77, and g E r, let ~(g, p) denote
the first point of g hit by p if it exists, otherwise

~(9, p) = +CO. We set ~(r, P) = rninf~r P(9, P). we
want to build a data structure that, given a ray p G 7?,

computes @’, p) quickly, together with a g E 17such

that p(g, p) = @, p), Abusing the notation slightly,

we shall use p(l?, p) to denote the first intersection

point as well as the object that contains the intersec-

tion point.

Let Seg(’R) denote the set of all initial segments of

the rays of 7?,, i.e.,

Seg(R) = {o(p)z; p G R,z G p}.

Suppose that we have an efficient algorithm that,
given a segment ox E Seg(7?), decides whether it in-

tersects some objects g c I’. We refer to this pro-

cedure as the segment emptiness algorithm. We also

assume that the algorithm can detect the case when

an initial segment oz intersects I’ only at z and that

it can identify the intersected object in this case.

Observe that, given a point x on a ray p E 7?, we

can use the segment emptiness algorithm to decide

the relative order of z and @7, p): if the segment

o(p)x intersects I’ only at x then z = p(17, p), if o% is

empty then x < p(I’, p), and otherwise x > @’, p).

As it is often the case in similar situations, the para-

metric search technique due to Megiddo [25] can

be used to turn this “verification” algorithm into a

“searching)’ algorithm. Let us outline this technique

applied to our specific problem.

Let A be a segment emptiness algorithm. Let v be

the unit direction vector of p and let {t(t) = o(p)+

tv; t E R+} be a parametric representation of p. Let

t* denote the (yet unknown) value of the parameter

t such that z(t”)= p(I’,p). The first idea of the

parametric search technique is to run the algorithm A

to decide the emptiness of the segment o(p)x(t”), and

to run it “generically”, without specifying the value

oft*. The computation of the algorithm A will sooner

or later need some information about t*.As observed

earlier, we can gain some information about t*: we

can compare it with some given t,by running the

segment emptiness algorithm on the segment o(p)x(t)

(For a reason which becomes apparent later, we shall

think of this algorithm as another “template” of A

and call it 1?).

Specifically, assume that the flow of execution of A

depends on comparisons, each of which involves test-

ing the sign of a low-degree polynomial in t* whose

coefficients may depend of p, on the objects of 17but

not on t*. We maintain an interval I, which is ei-

ther a singleton or an open interval that contains t*.

Each time a comparison is to be made, the few roots

of the associated polynomial are computed, and we
run the algorithm B “off line” at each of them. If

one of the roots is t* itself, we can stop, otherwise we

determine the location oft* among these roots, and

519

thus also the sign of the polynomial at t. If t* @ 1,

we can conclude that t* does not exist, and we stop.

If we know the two consecutive roots fli, fli+l such

that t* E (/l?i, ~i+l)j we can compute the sign of the

polynomial at t*,i.e., the outcome of the compari-

son at t*.We now set I to I n (pi, @i+l) and resume

the execution of the generic algorithm A. As we pro-

ceed through this execution, each comparison that

we resolve further constrains the range where t* can

lie, and we thus obtain a sequence of progressively

smaller intervals, each known to contain t*,until we

either reach the end of A or hit t* at one of the com-

parisons at A. Since the outcome of A changes at t*,

A has to make some comparison whose polynomial
vanishes at t* (see [4] for a proof), which will cause

the computation to stop at the desired value t“.

The most expensive steps in this computation are

calls to the subroutine B for resolving comparisons.

To reduce this cost, the sequential algorithm A is re-

placed by its parallel version, AP. If AP uses p pro-

cessors and runs in TA parallel steps, then each such

step involves at most p independent comparisons, that

is, each can be carried out without having to know

the outcome of the others. We can then compute
the roots of all p polynomials associated with these

comparisons, and perform a binary search to locate

t* among them (using the algorithm B at each bi-

nary search step). This requires O(p + TB logp) time

per parallel step, for a total of O(pTA + TBTA log p)

time. An improvement of this technique by Cole [16]

can further reduce the running time in certain cases

by another logarithmic factor (this, however, depends

on the specific algorithm AP).

Let us summarize our discussion in a (rather long)

theorem:

Theorem 2.1 Let 17 be a set of objects and 7? a col-

lection of rays. Suppose that we have a data structure

X supporting segment emptiness queries with respect

to r for the segments of Seg(%?,). Let AP be a parallel

algorithm for answering a segment emptiness query,

which uses p processors and runs in TA parallel steps,
and such that for a query segment ox, the computa-

tion of AP uses the information about x only in de-
ciding the signs of certain jized-degree polynomials in

the coordinates of x. Let B be another version of seg-

ment emptiness algorithm, which can report an object

g E r intersecting the endpoint of the query segment
provided that the segment is otherwise empty, and let

TB be the running time of B. Then the ray shooting

problem for rays in 7? can be solved using the same
data structure E, in time O(pTA + TBTA logp). •I

This approach can obviously be extended to find

the first k objects of I’ intersected by the query ray.

In this case, the generic algorithm AP should decide
whether the query segment o(p)z(t”) intersects ex-

actly k objects of r, and algorithm B decides whether

the query segment intersects less than, or equal to, or

more than k objects of r. After having computed the

value of t*,the answer (the first k objects hit by p)

can be computed by a segment range reporting algo-

rithm C; usually a variant of A or B gives such an

algorithm. The running time of the resulting algo-

rithm will then be O(pTA + TBTA logp + Tc), where

TA, TB and p have the same meaning as above and

Tc is the running time of C’ (Tc may depend on k).

3 Specific Results on Ray

Shooting

In this section we apply the general technique de-

scribed in the previous section to obtain fast solutions

for some specific instances.

3.1 Ray shooting among hyperplanes

In this subsection we describe an efficient ray shoot-

ing algorithm for a collection H of n hyperplanes in

Rd. For d < 3, Agarwal and Sharir [5] have given

an algorithm that gives a standard tradeoff for ray

shooting among hyperplanes with b = d. We obtain

similar bounds in higher dimensions. In view of The-

orem 2.1, it suffices to describe an efficient procedure

for the segment emptiness problem.

The dual of a hyperplane (resp. segment) in Rd is

a point (resp. double-wedge),2 and a segment e inter-

sects a hyperplane h if and only if the double-wedge e*

contains the point h*. Therefore, the segment empti-

ness problem for Ii is the same as detecting whether

a query double wedge contains any point of H*. This

problem is a special case of the simplex range search-

ing problem, where one wants to report or count the

points contained in a query simplex.

Chazelle et al. [13] have shown that using O(rnl+’),

(n < m < nd) space and preprocessing, one
can answer a double wedge range query in time

O(* log2 n). With a knowledge of this data struc-

ture, it is straight-forward to check that the al-

gorithm can be run in O(log n) parallel steps us-

ing 0(* log n) processors. Also, it is shown in

ZT~O@OUt this paper, will denote by T* the dutd of ~

object V, and by J?” the set {T*; ~ c r}.

520

[5, 21] that the data structure can be dynamically

maintained under insertions and deletions of points.

Hence, in view of Theorem 2.1, we have

Theorem 3.1 Given a set H of n hyperplanes in

Rd, a parameter m, n ~ m ~ nd, one can build, in

time O(rnl+E), a data structure of size O(ml+C) that

supports ray shooting queries in time O(* log4 n).

This data structure can be maintained dynamically in

O(ml+c/n) amortized time per insertionjdeletion of

a hyperplane.

Remark 3.2: The above theorem can be extended
to report in time O(* log4 n + k) the first Is hyper-
planes intersected by the query ray.

3.2 Ray shooting in a convex polytope

Next, we consider the ray shooting problem for a con-

vex polytope P in I%d. We assume that P is described

as the intersection of n half-spaces in Rd. Let H

denote the set of hyperplanes bounding these half-

spaces.

We first describe the algorithm for the special case

when o, the origin poin~ of the ray, lies inside P. This

is simpler and sufficient in many applications. After

a suitable projective transformation, we can assume
that P is the region lying above all hyperplanes of H

(this is just for the sake of explanation, we can ac-

tually avoid performing any transformation by mod-

ifying the algorithm suitably). By Theorem 2.1, we

are interested in a data structure that, for a query

segment ox, detects whether ox intersects the bound-

ary of P, which by our assumption is equivalent to

whether there is a hyperplane of H lying above z. In

the dual setting, this means that the half-space lying

above the hyperplane x* contains at least one point

of H*.

We thus want to preprocess H* for half-space

emptiness queries, i.e., we need a data structure de-

ciding whether there is a point of H* in a query half-

space. In [22] it is shown that the half-space empti-

ness queries can be answered in time 0(-r log n)

using O(ml+C) space and preprocessing (the algo-

rithm includes the data structure due to Clarkson

[14] for the “large space” case). A parallel imple-

mentation with O(log n) time and number of pro-

cessors bounded by the sequential running time is
quite straight-forward. Furthermore, the algorithm

can also detect the case when the interior of the query

half-space is empty but its boundary contains a point

(see original papers [14, 22]). We thus have

.5

Lemma 3.3 Given a convex polyiope in Jl%d, de-

scm”bed as the intersection of n half-spaces, and a pa-

rameter m, n ~ m < nldJ2J, one can construct, in

time O(ml+e), a data structure of size O(m1+8) so

that, for a query ray whose origin point lies inside

P, one can determine the jirst point of the polytope

boundary hit by the ray in 0(~~1 log3 n) time.

This result has one surprising consequence.

Namely, the half-space emptiness algorithm of [22]

sometimes concludes that the query half-space is

nonempty, but does not exhibit a “witness point”

contained in the query half-space (which may be re-

quired in some applications). Our ray shooting re-

sult allows to obtain such a witness: Let h denote

the hyperplane bounding the query half-space, and

without loss of generality assume that the query half-

space lies above h. In the dual setting, we thus want

to return a hyperplane of H lying above the point

h“ if it exists. We shoot a vertical ray in the ‘xd
direction from the point (hi, h~_ ~, +m) (where

(hi,..., h;) is the coordinate vector of h*). If h* lies

below the first hyperplane hit by the ray, then that

hyperplane is the desired witness, otherwise h* lies

above all hyperplanes of H. Hence we have

Corollary 3.4 Given an n point set S in lRd, one

can construct, in time O(ml+C) (n ~ m ~ nld/2J),

a data structure of size O(ml+C), such that, for

a quew half-space y, one can determine, in time

0(+ log3 n), a point of 7 n S or conclude that
~ns=O.

Next, we extend the ray shooting algorithm for the

case when the origin point o of p does not lie in P.

Note that this does not quite fall into our general

framework (at least not if we take the set of hyper-

planes for I’), so we must exhibit a specific (although

very similar) solution using parametric search. It suf-

fices to find a point Z* = z(t*)of the query ray inside

P if it exists (then the previous ray shooting result

can be applied); in our setting this means a point Z*

of the ray lying above all hyperplanes of H. For this

problem, the generic algorithm A will check whether

z(t)c P. The oracle B should decide on which side

of a point z = z(t)the potential intersection of the

query ray with P lies. We let B be the algorithm dual

to the one from Corollary 3.4, i.e. it checks whether

z c P (if yes the computation may finish), and if not,

it exhibits a hyperplane h 6 H lying above z. The
crucial observation is that at lesst one of the two por-

tions of the query ray determined by z(t) also lies be-

low h, and therefore p n P is bound to lie in the other

portion (provided it exists at all). As a result the

21

algorithm B can still resolve comparisons. Clearly, if

p intersects 7, a point in p n P will be found. On

the other hand, if p doea not intersect P, the answers

given by B will become inconsistent (i.e., the interval

for t* becomes empty). By Corollary 3.4 and The-
orem 2.1, a ray shooting query can be answered in
time O(~,,~,,,J log5 n).

In [3], we presented a dynamic data structure of size

O(rnl+E) for the half-space range searching, which

could insert or delete a point in O(m/nl-e) amortized

time. The query time of this structure is the same as

that of the static structures. Hence, we can conclude

Theorem 3.5 Given a convex polytope in lRd de-

scribed as the intersection of n half-spaces, and a pa-

rameter m (n < m < nid/2J ,), one can preprocess it in
time O(nal+’) into a data structure of size O(ml+e)j

so that the first point of the polytope boundary hit by

a query ray can be determined in O(b log5 n)

time. The data structure can be maintained dynami-

cally in amortized time O(ml+E /n) per insertjdelete

operation.

3.3 Ray shooting among half-planes

In this subsection we consider the case when I’ is a

set of half-planes in R 3. Although it is already known

that a ray shooting query among planes in R3 can be

answered in roughly n/m1i3 time, this procedure does

not extend to half-planes. The query time of the best

known algorithm is close to n16i15/m4J15, which is

the same ss the query time for ray shooting among

triangles in R3 [5]. Here we improve the query time

to O(* log4 n); as usual, we will describe an effi-

cient procedure for the segment emptiness problem.

We use a “multi-level” partition trees tailored to this

specific application (cf. [5, 13]).

Let H denote the set of planes supporting the half-

planes of I’. We construct a partition tree T on the

point set H“. Each node v of T is associated with

a subset of points in II*. Let I’v be the set of half-

planes corresponding to the points associated with
v, and let Lo be the set of lines bounding the half-
planes of 17v. We orient each line 4 of L. so that the

half-plane bounded by -t lies to its right (i.e., in the

clockwise direction). LV is thus a set of oriented lines.

At each node v we construct a secondary data

structure. for deciding whether a query line t (in our

application, the line carrying the query segment) has

positive (or negative) orientation with respect to all

lines of LV. Chazelle et al. [10] give a data struc-
ture for this problem with space and preprocessing

5

time O(n2+e) and with O(log n) query time. They

actually reduce the problem to answering a half-space

emptiness query in 5 dimensions 3. Combining their
reduction with the already mentioned results of [22]

for the half-space emptiness problem, we get a data

structure for the segment emptiness problem (with

respect to half-planes in 3-D) that admits a standard

tradeoff with b =2; see [2].

When answering a segment emptiness query for a

segment e = pq with this two-level data structure,

we first query the first level structure with the dou-

ble wedge e* dual to e. It gives the set of half-planes,

whose supporting planes intersect e, as a pairwise dis-

joint union of O(* log n) canonical subsets, such

that within each canonical subset, either p lies below

all the planes containing the half-planes of ru and

q lies above all of them, or vice-versa. Let r. be a

first-level canonical subset of the query output, and

without loss of generality assume that p lies below all

of them.

The query segment e intersects a half-plane ~ E 17”
if and only if 1, the line supporting e and oriented

from p to q, intersects ~. If 1 is in clockwise (resp.

counter-clockwise) direction to the line 8Y, then t? in-

tersects y if and only if t lies below (resp. above) 87,

i.e., 1 has negative orientation with respect to 87.

In other words, 1 does not intersect any half-plane

of I’V if and only if 1 has positive orientation with

respect to all lines of Lv. Similarly, if p lies above

all the planes containing the half-planes of 17V, then

e does not intersect any half-plane of rv if and only

if # has negative orientation with respect to all lines

of LV. We can perform this test using the secondary

structure stored at v. By repeating this step for all

first-level canonical subsets of the query output, we

can answer the emptiness query. This data structure

gives a standard tradeoff with b = 3 for the segment

emptiness problem. We thus obtain

Theorem 3.6 Given a set I’ of n half-planes in lR3

and a parameter m, n < m < n3, we can prepro-
cess I’, in time O(ml+E), into a data structure of

size O(ml+e), so that a ray shooting query can be

answered an time O(* logO(lJ n). The data struc-

3The red~ction uses so-called p&ker coordinates of tines.

Every line @of the set L. is mapped to a Plucker point +’) in

projective 5-space, and a query line / is mapped to a Plucker

hyperplane w(t) in projective 5-space. The query line ./ has

positive (resp. negative) orientation with respect to all lines in

L. if and only if the hyperplane w (/) lies above (resp. below)

the Plucker points of all lines in L., see [31, 10]. The problem

thus reduces to determining whether the half-space lying above

(resp. below) w(l) is empty, which can be done using the data

structure of ClarkSon [14].

’22

ture can be maintained dynamically in amortized time

O(rnl+c /n) per insertldelete operation.

4 Nearest and Farthest Neigh-

bors Searching

We now turn our attention to the neighbor searching

problems: Given a set S of n points in lRd, store S

into a data structure so that, for a query point (and

an integer k ~ n, one can quickly compute k-nearest

(or k-farthest) neighbors of~ in S.

‘e maP ‘ach Point P = (Pl ,P2, Pd) of S to
the hyperplane S(p) in Rd+l, which is the graph of a

d-variate linear function

It is well known that p c S is a closest neighbor of

a point (= (.$1,<z, . . . , &l) if and only if

(see [18]). The problem of computing a closest neigh-

bor thus reduces to finding a hyperplane in the upper

envelope of ~(S) hit by the vertical ray p, emanating

from the point (<1, &, <,i, +eo) in ‘~d+l direc-

tion. Since the upper envelope of ~(S) is a convex

polytope defined as the intersection of n half-spaces

and the origin point of p lies in t(S), we can use

Lemma 3.3. A farthest neighbor query can also be

answered using the same approach. Hence, we obtain

Theorem 4.1 Given a set S of n points in IRd

and a parameter n ~ m < n(di21, one can pre-

process S, in time O(ml+&), into a data structure

of size O(mlte) so that, for a query point f, one

can compute ii% closest or farthest neighbor in S in

time 0(m1,~4,,T log3 n). Moreover, the data struc-

ture can be maintained dynamically in amortized time

O(ml~c /n) per insertidelete operation.

We can extend this algorithm to report k near-

est or farthest neighbors of a query point. We will

restrict ourselves to nearest neighbors; the farthest

neighbors can be handled analogously. The k near-

est neighborg of $ are the same as the first k hY-

perplanes of S(S) intersected by the vertical ray p

emanating from (fl, &, . . . , cd, +oo). Therefore, by

Remark 3.2, one can find k nearest neighbors of< in

time O(.* log4 n + k). But we can do better

when k M not very large.

By our reductions, it suffices to have an algorithm

deciding whether a query point lies below at most

k hyperplanes, and also a suitable reporting algo-

rithm. A result of [22] in a dual setting shows that,

in Rd, all s hyperplanes lying above a query point

can be reported in time 0(A log n + s) using

O(ml+c) space and preprocessing. Such a report-

ing algorithm can be turned into an algorithm that

checks in time 0(--~f log n + k) whether there are

at most k hyperplanes above a query point; see [2].

A parallel implementation of the reporting algorithm

with O(log n) parallel steps is again straightforward.

Hence we obtain

Theorem 4.2 Given a set S of n points in Rd, one

can preprocess it, in time O(ml+C), into a data struc-

ture of size O(m1+6) so that, for a query point ~, one

can compute its k closest (or farthest) neighbors in S

in time 0(+ log3 n + k logz n).

Remark 4.3: If m = n rdizl, the query time of the

above theorem can be improved to O(k log n), which

matches the bound of Mulmuley’s algorithm [27].

5 Hidden Surface Removal

Consider the following problem: “Given a set T of n

triangles in Ilk3 and a view point p at z = +co, we

want to compute the visibility map M(T) of T, i.e.,

the subdivision of the viewing plane z = +co such

that the same triangle of T is visible from all points

of a face.” Note that if we are given an arbitrary view

point p, we can apply an appropriate transformation

so that p maps to z = +oo.

De Berg et al. [7] have shown that the hidden

surface removal problem can be reduced to shooting

O(k) rays (k is the size of the visibility map) among

a collection of n curtains; a curtain is an unbounded

vertical triangle with two of its edges being vertical

rays extending to —co. In this section we will present
a faster solution for the ray shooting among a fam-

ily of curtains, which in turn will improve the time

complexity of their hidden surface removal algorithm.

Let I’ be a collection of curtains in R3. As usual,

it suffices to describe a data structure for the seg-

ment emptiness problem for 1?, Let f denote the line
cent aining e, 17 the line containing the bounded seg-
ment of a curtain -y, and 8 the xy-projection of an
object 6. The segment e intersects a curtain Y if and

523

only if (i) z intersects ~, and (ii) 4 lies below .t$. Let

~ = {~] ~ c I’} denote a set of n segments in I?z.

It is known (see e.g. [5]) that F intersects ? if and

only if ~ separates the endpoints of ~ and E intersects

-&. We construct a four-level partition tree (similar

to the one used in [5]) on ~ that can answer a ray

shooting query in time 0(A logO(l) n).

Plugging the resulting ray shooting procedure into

the hidden-surface removal algorithm of [7] and

choosing m = [n213/kl, we can compute the visi-

bility map in time 0(n2J3+e k2i3 + nl+C). Note that

we do not know the value of k in advance, therefore

we have to guess an initial value of m and update it

as the algorithm proceeds, as in [7, 28]; see any of

these papers for details. Hence, we can conclude

Theorem 5.1 The visibility map of a given set of n

tn”angles in IR3 with respect to a viewing point can be

computed in time 0(n213sCk213 + nl+e), where k is

the output size.

6 Computing Convex Layers

Let S be a set of n points in IR3. Let C17(S) de-

note the boundary of the convex hull of S. Then

the convex layers C(S) = {Cl, C’2, Cm } of S

can be defined as: So = S and, for 1 < i < m

Ci = CH(Si-l)fl S~-l, S~ = S~-1 –C~.

Let H denote the set of n planes dual to the points

in S. For the sake of simplicity we assume that the

planes of If are in the general position. In the dual

setting, the problem of computing the convex layers

of S reduces to computing the upper and lower en-

velopes of H (the cells in the arrangement of H that

lie above and below all planes of If) repeatedly. That

is, compute the planes of H appearing in the upper

and lower envelopes of H, delete these planes from

H, and repeat the above two steps until H becomes

empty.

We will describe how to compute the upper en-
velope; the lower envelope can be computed analo-

gously. For each plane h c H, we pick up the half-

space lying above h, and preprocess the intersection

of the resulting half-spaces for efficient ray shooting

using Theorem 3.5. We will compute the l-skeleton of

the upper envelope (i.e., the graph formed by the ver-

tices and the edges of the upper envelope) by travers-

ing its edges in the depth-first manner. Suppose we

are at a vertex v of the upper envelope. We want to

determine the other endpoints of the edges incident

to v. We shoot a ray p from v along each edge e inci-

dent to v; p can be computed in O(1) time. If p does

not intersect any plane of H (other than the ones that

contain p), e is unbounded. Otherwise, if p intersects

a plane h, then v’ = p n h is the other endpoint of

v. Since we want to find the first plane intersecting

p that does not contain p, we delete the two planes

containing p before answering the ray shooting query

and insert them back after answering the query. By

Theorem 3.5, we can answer a ray shooting query in
0(log5 n) time, and can insert/delete a half-space in

O(n’) time, so we spend O(ns) time at v. If v’ has

not been visited earlier, we recursively search at v’.

We repeat this procedure for all edges incident to o.

Let n. denote the number of planes of H appearing in

its upper envelope. Since each vertex is visited only

once, and the number of vertices is O(nti), the total

time spent is O(n.ne).

Similarly, we compute the lower envelope of H. Af-

ter having computed the upper and lower envelopes,

we delete the planes that appear in the lower and

upper envelopes. We repeat the above procedure un-

til H becomes empty. Summing the time complexity

over all layers, we can conclude

Theorem 6.1 The convex layers of a set of n points

in lR3 can be computed in O(nl+C) time.

7 Computing Levels in Plane

Arrangements

Levels in hyperplane arrangements play an impor-

tant role in several geometric problems, including

higher order Voronoi diagrams [18] and half-space

range searching [12].

It is well known that ~~=1 Illj I = 0(n[df2J k(dJ21)

for an arrangement of n hyperplanes in Rd [15],

and that this bound is tight in the worst case.

Hence, the expected complexity of j-level with j ran-

domly chosen in range from 1 to k is no worse than

0(nldJ2J k[d121 - 1), but only little is known about

the worst-case complexity of a single level (see [18]

for older results and references for dimension 2, and

[6, 29, 32] for recent results).

Since the complexity of a k-level varies a lot, a nat-
ural question is whether it can be computed in an

output sensitive fashion. Edelsbrunner and Welzl [19]

showed that a level in arrangement of n lines in the

plane can be computed in time O(n log n + b log2 n),

where b is the actual size of the level. Recently Mul-

muley [26] presented a randomized algorithm for com-

524

b#*— —!.., b_...- .“4 .- ,.

puting all levels III, 11~, for a given k, whose

expected running time is O(n ldi2j k [~/zl) for d ~ 4

and 0(nk2 log ~) for d = 3. We are not aware of

any efficient algorithm for computing a single level in

arrangements of planes in R3. Here we present an

output sensitive algorithm with O(ne) cost for every

feature of the k-level. Our technique also extends to

higher dimensions, though we can only obtain some-

what worse bounds:

Theorem 7.1 Given a set H of n planes in lR3 and
an integer k < n, one can compute the k-level in the

arrangement of H in time O((n + b)l+E), where b is

the actual size of the level.

It is well known that computing the kth-order

Voronoi diagram in Rd can be reduced to comput-

ing the k-level in an arrangement of n hyperplanes in

Rd+l. Thus, we get

Corollary 7.2 The k-th order Voronoi diagram of a

set of n points in the plane can be computed deter-

ministically in time O((b + n)ne) = O(nl+ek), where

b is the actual size of the diagram.

Proofi We basically follow the same approach as in
the previous section for computing the convex layers.
That is, we traverse the l-skeleton of Ih by following
its edges in a depth first manner. Assuming that the
planes of H are in general position, every vertex of

A(H) is the intersection point of three planes. At

every vertex of the k-level, there are three edges of

the level. Hence, having arrived at a vertex v through

one of its edges, it suffices to determine the other

endpoints of the remaining two edges and recursively

search from these vertices on, provided that they have

not been visited earlier.

For a vertex v = hl rl hz n haof the level, let HJ(v)

(resp. Hu(v)) denote the set of planes of H lying

strictly below (resp. above) v (thus, by our gen-

eral position assumptions, each plane of H except for

hl, hz and h3 appears in Hi(v) or H.(v)). Through-

out the depth-first search algorithm, we will maintain

the following invariant:

Whenever we visit a vertex v, we have at our

disposal a data structure Al(v) for answering

ray shooting queries inside the upper enve-

lope of H1 (v), and a similar data structure

Au(v) for the lower envelope of Hti(v).

Suppose that we have arrived at a vertex v = hl nhzn
h3 along one of its edges, el,z c hl n h2. We query

both Al(v) and AU(v) with a ray p1,3 originating at v

and going inside hl n h3 in an appropriate direction.

This gives us the first plane hj hit by the ray p1,3 (if

no such plane exists, pl,3 determines an unbounded

edge of the l-skeleton). We then check whether the

vertex v’ = hl n hj n h3has already been visited. If

the answer is ‘no’, we recursively search at v’. After

returning to the vertex v, we perform a similar action

with the ray p2,3 originating in v and going within

h2 n h3. After returning to v again, we go back to the .

vertex from which we originally came to v.

It remains to show how to maintain the invariant

(the ray shooting data structures). This is quite sim-

ple: any two vertices v and VI joined by an edge share

two of the triple of defining planes. Thus, when pass-

ingfrom a vertex v = hlnhznhs to v’ = h{nhznhs,

we delete h; from either At(v) (if h{ is below v) or

AU(V) (if hj is above v), and we insert hl to the ap-

propriate one of Al(v), AU(V), obtaining Al(v’) and

AU (v’). Hence, for the depth-first search we need to

perform at most 4 ray shooting queries and at most

4 insert/delete operations at each vertex of the 1-

skeleton.

Again, we can find in O(n log n) time the first

vertex on ~k from which we initiate the depth-first

search. Hence the tot al running time of the algorithm

is O((n + b)nc), which proves part (i) of Theorem 7.1.

The above algorithm can be extended to higher di-

mensions. In particular, the k-level in an arrange-

ment of n hyperplanes in Rd can be computed in

()
time O nl+c + bnl - b+’ . In fact, if the value

of b is large, one can improve the running time to

@~+Eb~ + nl+~) using a different data struc-

ture, see [3].

References

[1]

[2]

[3]

[4]

P. K. Agarwal, Ray shooting and other applications
of spanning trees with low stabbing number, SIAM
J. Computing 21 (1992), in press.

P. K. Agarwal and J. Matou5ek, Ray shooting and
parametric search, Technical Report CS-1991-22,
Dept. Computer Science, Duke University, 1991.

P. K. Agarwal and J. Matou~ek, Dynamic half-space
range reporting and its applications, Technical Re-
port, GS-1991-43, Dept. Computer Science, Duke
University, 1991.

P. K. Agarwal and M. Sharir, Planar geometric loca-
tion problems, Tech. Rept. 90-58, DIMACS, Rutgers

525

University, August 1990. (Also to appear in Algorith-
mica.)

[5] P. K. Agarwa.1 and M. Sharir, Applications of a new

partitioning scheme, Proc. ,$?ndWorkshop on Algo-
rithms and Data Structures, 1991, pp. 379–392.

[6] B. Aronov, B. Chazeile, H. Edelsbrunner, L. Guibas,

M. Sharir, and R. Wenger, Points and triangles in

the plane and halving planes in the space, Discrete

@ Computational Geometry, 6 (1991), 435-442.

[7] M. de Berg, D. Halperin, M. Overmars, J. Snoeyink,

and M. van Kreveld, Efficient ray shooting and hid-

den surface removaJ, Proc. 7th ACM Symp. on Com-

putational Geometry, 1991, pp. 51–60.

[8] M. de Berg and M. Overmars, Hidden Surface Re-

moval for Axis-Parallel Polyhedra, Proceedings 31’t

Annual IEEE Symposium on Foundations of Com-
puter Science, 1990, pp. 252–261.

[9] B. Chazelle, On the convex layers of a planar set,

IEEE Trans. Information Theory IT-31 (1985), 509-

517.

[10] B. Chazelle, H. Edelsbrunner, L. Guibas, M. Sharir

and J. Stolfi, Lines in space: Combinatorics and al-

gorithms, Proc. 21. ACM Symposium on Theory of
Computing, 1989, pp. 389–392. Full version: Tech.

Rept. 491, Dept. of Computer Science, New York

University, February 1990.

[11] B. Chazelle and L. Guibas, Vk.ibfity and intersec-

tion problems in plane geometry, Discrete Comput.
Geom. 4 (1989), 551-589.

[12] B. Chazelle and F. P. Preparata, Halfspace range

searching: An algorithmic application of k-sets, Dis-

crete U Computational Geometry, 1 (1986), 83–93.

[13] B. Chazelle, M. Sharir and E. Welzl, Quaai-optimal

upper bounds for simplex range searching and new

zone theorems, Proc. 6th ACM Symp. on Computa-

tional Geometry, 1990, pp. 23–33.

[14] K. Clarkson, A randomized algorithm for closest

point queries, SIAM J. Computing 17 (1988), 830–

847.

[15] K. L. Clarkson and P. Shor, New applications of
random sampling in computational geometry II, Dis-
crete & Computational Geometry, 4, 1989.

[16] R. Cole, Slowing down sorting networks to obtain

faster sorting algorithms, J. ACM 31 (1984), 200-

208.

[17] D. Dobkin and D. Kirkpatrick, Determining the sep-

aration of preprocessed polyhedra a unified ap-
th International colloquiumpreach, Proceedings 17

on Automata, Languages and Programming, 1990,

pp. 400–413.

[18] H. Edelsbrunner, Algorithms in Combinatorial Ge-
ometry, Springer-Verlag, 1987.

[19] H. Edelsbrunner and E. Welzl, Constructing belts

in two-dimensional arrangements with applications,

SIAM J. Computing 15 (1986), 271-284.

[20] L. Guibas, M. Overmars and M. Sharir, Ray shoot-

ing, implicit point location, and related queries in ar-

rangements of segments, Tech. Report 433, Courant

Institute, New York University, 1989.

[21] J. MatouSek, Efficient partition trees, Proc. 7th
ACM Symp. on Computational Geometry, 1991, pp.

1–9.

[22] J. Matou3ek, Reporting points in halfspaces, Proc.
.92nd IEEE Symp. on Foundations of Computer Sci-
ence, 1991.

[23] J. Matou&ek. Range searching with efficient hierar-

chical cuttings. In Proc. 8th ACM Symposium on

Computational Geometry, 1992. To appear.

[24] J. Matou3ek and O. Schwarzkopf. Linear optimiza-

tion queries. In Proc. 8th ACM Symposium on Com-

putational Geometry, 1992. To appear.

[25] N. Megiddo, Applying parallel computation algo-

rithms in the design of serial algorithms, J. ACM

30 (1983), 852–865.

[26] K. Mulmuley, On levels in arrangements and Voronoi

diagrams, Discrete @ Computational Geometry,

6 (1991), 307-338.

[27] K. Mulmuley, Randomized multidimensional search

trees: Further results in dynamic sampling, Proceed-
ings 32nd Annual IEEE Symposium on Foundations
of Computer Science, 1991, pp. 216–27.

[28] M. Overmars and M. Sharir, Output-sensitive hid-

den surface removaJ, Proc. 30th IEEE Symp. on

Foundations of Computer Science, 1989, pp. 598-

603.

[29] J. Path, W. Steiger, and E. Szemer6di, An upper

bound on the number of planar k-sets, Proc. 30th
IEEE Symposium on Foundations of Computer Sci-
ence, 1989, pp. 72–79.

[30] O. Schwarzkopf. Ray shooting in convex polytopes.

Technical Report B–91–18, FB Mathematik, Freie

Universit5t Berlin, 1991.

[31] D. Somerville, Analytical Geometry in Three Di-

mensions, Cambridge, 1951.

[32] S. VreLica and R. ~ivaljevif, The colored Tver-

berg’s problem and complexes of injective functions,

Manuscript, 1991.

526

