Action-Graph Games

Albert Xin Jiang Kevin Leyton-Brown Navin A.R. Bhat

Abstract

Representing and reasoning with games becomes difficuét they involve large num-
bers of actions and players, because utility functions caw ginmanageably. Action-Graph
Games (AGGs) are a fully-expressive game representataincéim compactly express util-
ity functions with structure such as context-specific (oicgtindependence, anonymity, and
additivity. We show that AGGs can be used to compactly repreall games that are com-
pact when represented as graphical games, symmetric gan@@g/mous games, congestion
games, and polymatrix games. We further show that AGGs cenpactly represent addi-
tional, realistic games that require exponential spaceuatl of these existing representa-
tions. We give a dynamic programming algorithm for compgyitianplayer’s expected utility
under an arbitrary mixed-strategy profile, which can aaghienning times polynomial in the
size of an AGG representation. We show how to use this algorib achieve exponential
speedups of existing methods for computing sample Nash @melated equilibria. Finally,
we present the results of extensive experiments, showatgiing AGGs leads to a dramatic
increase in the size of games accessible to computationbjsist

Keywords: game representations, graphical models, large games,utatigmal tech-
niques, Nash equilibria.

JEL classification codes:C63—Computational Techniques, C72—Noncooperative Games

1 Introduction

Simultaneous-action games have received consideralg sthich is reasonable as these games
are in a sense the most fundamental. Most of the game théenatlire presumes that simultaneous-
action games will be represented in normal form. This is [@latic because in many domains
of interest the number of players and/or the number of astfer player is large. In the nor-
mal form representation, the game’s payoff function isesoas a matrix with one entry for
each player’s payoff under each combination of all playactions. As a result, the size of the
representation grows exponentially with the number of gtay

Fortunately, most large games of practical interest hagkijustructured payoff functions,
and thus it is possible to represent them compactly. Inilitj this helps to explain why people
are able to reason about these games in the first place: westen the payoffs in terms of
simple relationships rather than in terms of enormous Ipdkbles. One thread of recent work
in the literature has explored game representations tkaitzde to succinctly describe games of
interest. In some sense, nearly every game form besidestheahform itself can be seen as

*Department of Computer Science, University of British Gohia.j i ang@s. ubc. ca

TDepartment of Computer Science, University of British Gohia. kevi nl b@s. ubc. ca

*Department of Physics, University of Torontbhat @hysi cs. ut or ont 0. ca

1We gratefully acknowledge Moshe Tennenholtz for his cdvarship of a paper on Local Effect Games [Leyton-
Brown & Tennenholtz, 2003], an action-centric graphicaldeldor games that inspired our work on AGGs.

such a compact representation. For example, the extermiredllows games with temporal
structure to be encoded in exponentially less space thamaheal form. In what follows,
however, we concentrate on game representations that awmgacd even for simultaneous-move
games of perfect information.

Perhaps the most influential class of compact game repegge g is those that exploit strict
independencies between players’ utility functions. Théss includes graphical games [Kearns
et al, 2001; Kearns, 2007], multi-agent influence diagrams [go& Milch, 2003], and game
nets [LaMura, 2000]; we focus on the first of these. Considgaah in which nodes correspond
to agents and an edge from one node to another representopasition that the first agent is
able to affect the second agent’s payoff. If every node ingitagoh has a small in-degree—that
is, if each agent’s payoff depends only on the actions of alsmanber of others—then the
graphical game representation is compact, by which we mtganittis exponentially smaller
than its induced normal form. Of course, there are any nurobemys of representing games
compactly. For example, games of interest could be assighed ID numbers. What makes
graphical games important is the fact that computationabktions about these games can be
answered by algorithms whose running time depends on te@&the representation rather than
the size of the induced normal form. (Note that this propeidgs not hold for the naive 1D
number scheme.) To state one fundamental property [Ddsga&lhal., 2006a], it is possible to
compute an agent’s expected utility under an arbitrary thsteategy profile in time polynomial
in the size of the graphical game representation. This ptppeplies that a variety of algorithms
for computing game-theoretic quantities of interest, saglsample Nash [Govindan & Wilson,
2003; van der Laaet al, 1987] and correlated equilibrium, can be made exponénfadter
for graphical games without introducing any change in tigeahms’ behavior or output [Blum
et al, 2006; Papadimitriou, 2005]. Furthermore, graphical gaare also computationally well-
behaved in other ways; efficient algorithms exist for conmmubther quantities of interest for
these games such as Nash equilibria on restricted graplesriget al, 2001; Elkindet al,
2006] or subject to a fairness criterion [Elkietlal., 2007], pure Nash equilibrium [Daskalakis
& Papadimitriou, 2006]¢-Nash equilibrium [Kearnst al,, 2001; Vickrey & Koller, 2002], and
evolutionary stable strategies [Kearns & Suri, 2006].

A drawback of the graphical games representation is thatytleelps when there exist agents
who neveraffect some other agents’ utilities. Unfortunately, mamyngs of interest lack any
structure of this kind. For example, nontrivial symmetranges are cliques when represented
as graphical games. Another useful form of structure noegaly captured by graphical games
is dubbedanonymity it holds when each agent’s utility depends only on the nunalb@gents
who took each action, rather than on these agents’ idesttitiRecently, researchers such as
Papadimitriou and Roughgarden [2005], Kalai [2005] andkakekis and Papadimitriou [2007]
have explored the representational, computational aatkgic benefits that can be derived from
symmetry and anonymity assumptions.

A weaker form of utility independence can usefully be conglivith symmetry and anonymity.
Specifically, utility functions exhibitontext-specifimdependencies when the question of whether
two agents are able to affect each other’s utilities dependlise actions both agents choose. Con-
gestion games [Rosenthal, 1973] are a prominent game egpia¢i®n that can express context-
specific payoff independencies, anonymityd symmetry. The congestion game representation
has many advantages. First and most importantly, manystiealinteractions—even involving
very large numbers of players and actions—have compaatseptations as congestion games

°Note that our definition of anonymity presumes that it malessss to speak about two different agents having at
least some of the same action choices. There are variousofiaghieving this formally; for now, one can simply assume
that anonymous games are also symmetric.

(see, e.g., [Roughgarden & Tardos, 2002]). Second, congegimes have attractive theoretical
properties. Most notably, they always have pure-strategylieria, and indeed always admit an
exact potential function [Monderer & Shapley, 1996]. As asequence, simple best-response
dynamics are guaranteed to converge to a pure-strateghbemguin. Finally, congestion games
have attractive computational properties. For exampleetated equilibrium can be efficiently
computed for congestion games [Papadimitriou, 2005], amd-ptrategy Nash equilibrium can
be efficiently computed for restricted subclasses of caimegames (see, e.g., [leorg al,,
2005]).

Unfortunately, congestion games too have a catch. Unlileplgcal games, congestion
games are not a universal game representation: not evanahéorm game can be encoded as a
congestion game. Indeed, this problem should be obvioustte fact that congestion games al-
ways have pure-strategy equilibria. Congestion gamesnethat agents’ utility functions must
be expressible assumof arbitrary functions of the numbers of agents who chosh eéa set of
resources, where each action is interpreted as the choareeasr more resources. This linearity
assumption is restrictive. Thus, while congestion gamestitote a useful model for reasoning
about certain game-theoretic domains, they cannot sethedmasis for a set of general tools for
representing and reasoning about games.

Action-graph games (AGGs) are a general game represamthibcan be understood as of-
fering the advantages of—and, indeed, unifying—both gieglyames and congestion games.
Like graphical games, AGGs can represent any game, and tfeoeetic computations can
be performed efficiently when the AGG representation is cachpHence, AGGs offer a gen-
eral representational framework for game-theoretic cdatpn. Like congestion games, AGGs
compactly represent context-specific independence, anityyyand additivity, though unlike
congestion games they do not require the latter. FinallyGAGan also compactly represent
many games that are compact neither as graphical games congsstion games.

We begin this paper in Section 2 by defining the basic AGG sapr&tion, characterizing
its representation size, and showing how it can be used tesept normal-form, graphical, and
symmetric games. In Section 3 we introduce the idetunétion nodesshow how this repre-
sentational device can capture additional structure ierséexample games, and show how to
represent anonymous games as AGGs. Section 4 describes heprésent additive structure in
the utility functions of AGGs, and shows how congestion aolgimatrix games can be succinctly
written as AGGs. Then we turn from representational to camtmnal issues. In Section 5 we
present a dynamic programming algorithm for computing aenélg expected utility under an
arbitrary mixed-strategy profile, prove its correctness emmplexity, and explore several elab-
orations. In Section 6 we prove that the problem of finding aiNequilibrium of an AGG
is PPAD-complete (a positive result, as AGGs can be expaignsmaller than normal-form
games), and show how to use our dynamic programming algotithrspeed up existing methods
for computing sample Nash and correlated equilibria. Bynil Section 7 we present the results
of extensive experiments with some of these algorithmsficoimg our theoretical predictions
and demonstrating that AGGs can feasibly be used to reasmrt atteresting games that were
inaccessible to any previous techniques. The largest gaaheve tackled in our experiments had
20 agents and 13 actions per agent; we found its Nash equititin 14.3 minutes. A normal
form representation of this game would invol¥e x 10'3* numbers, requiring an outrageous
7.5 x 1026 gigabytes even to store.

Finally, let us describe the relationship between this pape past work, mostly our own,
on AGGs. Leyton-Brown and Tennenholtz [2003] introducezhleeffect games, which can be
understood as symmetric AGGs in which utility functions aequired to satisfy a particular
linearity property. Bhat and Leyton-Brown [2004] introagutthe basic AGG representation and

some of the computational ideas for reasoning with them.dymamic programming algorithm
was first proposed in Jiang and Leyton-Brown [2006], as wasdba of function nodes. The
current paper substantially elaborates upon and extemdefiresentations and methods from
these two papers. Other new material includes the additivetsre model and the encoding of
congestion games, several of the examples, the relatipbsiiveen our dynamic programming
algorithm and polynomial multiplication, our computat&dmethods fok-symmetric games and
for additive structure, and our speedup of the simpliciéldivision algorithm. Furthermore, all
experiments in this paper (Section 7) are new. Going beybadvbrk described here, in Jiang
and Leyton-Brown [2007] we gave a message-passing algoffitn computing pure-strategy
equilibria of symmetric AGGs, in Thompse@hal. [2007] we explored the use of AGGs to model
network congestion problems that cannot be captured asestiog games, and in Thompson
and Leyton-Brown [2008] we used AGGs to compute the NasHibgaiof perfect-information
advertising auction problems. Daskala&tsal. [2008] (a separate group of researchers) recently
considered the design of algorithms for the computatiortidash equilibrium of AGGs.

2 Action Graph Games: The Basic Representation

We begin with an intuitive description of an action-grapimga Consider a directed graph with
nodesA and edge, and a set of agent¥ = {1,...,n}. ldentical tokens are given to each
agenti € N. To play the game, each ageérgimultaneously places her token on a nade A;,
whereA; C A. Each node in the graph thus corresponds to an action chwitéstavailable to
one or more of the agents; this is where action-graph gantebgjename. Each agent’s utility
is calculated according to an arbitrary function of the nslde chose and theumbersof tokens
placed on the nodes that neighbor that chosen node in thé.gveg will argue below that any
simultaneous-move game can be represented in this wayhahddtion-graph games are often
much more compact than games represented in other ways.

2.1 Definition of AGGs

We now turn to a formal definition of action-graph games. Net= {1,...,n} be the set of
agents. Central to our model is thetion graph

Definition 2.1 (Action graph) Anaction graptG = (A, E) is a directed graph where:

e Aisthe set of nodes. We call each nade A anaction and.A theset of distinct actions
For each agent € N, let A; be the set of actions available towith A = J,. 5 A; 2 We
denote byi; € A; one of ageni’s actions. Armaction profile(or pure strategy profilds a
tuplea = (as, . .., a,). Denote byA the set of action profiles. Thetr =[], A; where
] is the Cartesian product.

e Fis a set of directed edges, where self edges are allowed. Y& $aa neighborof « if
there is an edge front' to «, i.e., (¢/,) € E. Let theneighborhoodf «, denoted/(«),
be the set of neighbors of i.e.,v(a) = {o/ € A|(d/,a) € E}.

Given an action graph and a set of agents, we can further deéiaefiguration which is a
feasible arrangement of agents across nodes in an actiph.gra

Spifferent agents’ action setd;, A; may (partially or completely) overlap. The implicationstbfs will become
clear once we define the utility functions.

Definition 2.2 (Configuration) Given an action grapli.A, E') and a set of action profiled, a
configuratiorc is a tuple of|.A| non-negative integer&:(a))q.c 4, Wherec(a) is interpreted as
the number of agents who chose actiore A, and where there exists sorme= A that would
give rise toc. Denote the set of all configurations &5 LetC : A — C be the function that
maps from an action profile to the corresponding configuratian Formally, ifc = C(a) then
cla)={i € N:a; =a}|forall a € A.

We can also define a configuration over a subset of nodes. ticydar, we will be interested
in configurations over a node’s neighborhood.

Definition 2.3 (Configuration over a neighborhood) Given a configuratior € C' and a node
o € A, let theconfiguration over the neighborhootlo, denoted-(*), be the restriction of: to
v(a), i.e.,c® = (c(a')aeu(a). Similarly, letC(®) denote the set of configurations oveir)

in which at least one player plays* LetC(®) : A — C(® be the function which maps from an
action profile to the corresponding configuration owgry).

Now we can state the formal definition of action-graph ganse®ekows.
Definition 2.4 (Action-graph game) An action-graph game (AGG) is atudl®’, A, G, u) where
e N is the set of agents;
o A= TJ,cn Aiis the set of action profiles;
e G = (A, E)is an action graph, wherel = J, 4; is the set of distinct actions;

e u is a tuple(u®)nca, Where eachu® : C(®) — R is theutility function for action a.
Semanticallyy®(c(®)) is the utility of an agent who chose when the configuration over
v(a)is e,

For notational convenience, we defingy, ¢(®)) = u®(c(*)) andu;(a) = u(a;,C(%)(a)).
We also defined _; = H#i A; as the set of action profiles of agents other thand denote an
elementofd_; bya_;.

2.2 Example: Ice Cream Vendors

The following example helps to illustrate the elements ef AGG representation, and also ex-
hibits context-specificity and anonymity in utility funetis. This example would not be com-
pact under the existing game representations discussie inttoduction. It was inspired by a
problem introduced by Hotelling [1929], and elaboratesxamgple used in Leyton-Brown and
Tennenholtz [2003].

Example 2.5 (Ice Cream Vendor game)Consider a setting in which vendors sell chocolate
or vanilla ice cream, and must choose one of four locationsgla beach. There are three kinds
of vendors:n¢ chocolate (C) vendorsyy vanilla vendors, andhy, vendors who can sell both
chocolate and vanilla, but only on the west side. Chocolzami(la) vendors are negatively af-
fected by the presence of other chocolate (vanilla) venithdise same or neighboring locations,
and are simultaneously positively affected by the preseficearby vanilla (chocolate) vendors.

4If action « is in multiple players’ action sets (say playérg), and these action sets do not completely overlap, then it
is possible that the set of configurations given thalayeda: (denotedC (5:9)) is different from the set of configurations
given thatj playeda. C(®) is the union of these sets of configurations.

Figure 1: AGG representation of the Ice Cream Vendor game.

The AGG representation of this game is illustrated in FiglreAs always, nodes represent
actions and directed edges represent membership in a noéasborhood. The dotted boxes
represent the action sets for each group of players; for edanthe chocolate vendors have
action setA¢. Note that this game exhibits context-specific indeperal@nthout any strict
independence, and that the graph structure is independent o

2.3 Size of an AGG Representation
Intuitively, AGGs (as defined so far) capture two types aficture in games:

1. Shared actions capture the ganmai®nymitystructure: agent's utility depends only on
her actiona; and the configuration. Thus, agentares about thaumberof players that
play each action, but not the identities of those players.

2. The (lack of) edges between nodes in the action graph ssgamntext-specific indepen-
denciesof utilities of the game: for ali € N, if i chose actionv € A, theni’s utility
depends only on the configuration over the neighborhoed ¢ other words, the config-
uration over actions not in(«) does not affect’s utility.

We have claimed that action graph games provide a way of septig games compacily.
But what exactly is the size of an AGG representation? And Hoes this size grow with the
number of agents? In this subsection we give a bound on the size of an AGG, aow hat
asymptotically it is never worse than the size of the eqeivahormal form.

From Definition 2.4 we observe that to completely specify &@GAwe need to specify (1)
the set of agents, (2) each agent’s set of actions, (3) tienagaph, and (4) the utility functions.
The first three can easily be compactly represented:

1. The set of agenty = {1,...,n} can be specified by the integer

2. The set of actionsl can be specified by the integlet|. Each agent’s action set; C A
can be specified i0(|.A|) space.

3. The action graplt’ = (A, E) can be straightforwardly represented as neighbor lists: fo
each nodex € A we specify its list of neighbors(«) C A. The space required is
> wca lY(@)], which is bounded byA|Z, whereZ = max, |v(a)|, i.e., the maximum
in-degree of.

We observe that whereas the first three components of an ®G@, G, u) can always be
represented in space polynomiakirand| 4;|, the size of the utility functions can be exponential
in the worst case. So the size of the utility functions deteemwhether an AGG can be tractably
represented. Indeed, for the rest of the paper we will refdre number of payoff values stored as
the representation size of the AGG. The following theorewegian upper bound on the number
of payoff values stored.

Theorem 2.6 Given an AGA", the number of payoff values stored by its utility functienat
most|A|%. If Z is bounded by a constant asgrows, the number of payoff values is
O(JA|n?), i.e. polynomial with respect to.

Proof. For each utility functionu® : C(® — R, we need to specify a utility value for
each distinct configuration® ¢ C(®). The set of configuration§(®) can be derived
from the action graph, and can be sorted in lexicographiad¢o So we do not need to
explicitly specifyC(®); we can just specify a list dfZ(®)| utility values that correspond to
the (ordered) set of configuratioP(&(*)|, the number of distinct configurations oveic),

in general does not have a closed-form expression. Insteadaonsider the operation of
extending all agents’ action sets wa : A; — A. This would increase the number of
configurations. Thus the number of configurations axer) under the new action sets is an
upper bound ohC(®)|. The bound is the number of (ordered) combinatorial contjpmsi of

n — 1 (since one player has already chosg@iinto |v(«)| + 1 nonnegative integers, which is

("_‘1;2('!”)(‘“”) = % Then the total space required for the utilities is boundechf

above by|A|%. If Z is bounded by a constant agyrows, this grows like)(|.A|nt).
]

For each AGG, there exists a unigmeluced normal formepresentation with the same set
of players andA4;| actions for eacli; its utility function is a matrix that specifies each playsr
payoff for each possible action profidec A. This implies a space complexity of[[, |4,
When A; > 2 for all i, the size of the induced normal form representation groyg®e&ntially
with respect ton.

Theorem 2.7 The number of payoff values stored in an AGG representasiahways less than
or equal to the number of payoff values in the induced nororahfrepresentation.

Proof. For each entry in the induced normal form that represéatatility under action
profile a, there exists a unique action profilén the AGG with the corresponding action for
each player. This induces a unique configuratigi{a) over the AGG’s action nodes. By
construction of the AGG utility functiong;(a) together witha; determines a unique utility
u®(C(*)(a)) in the AGG. Furthermore, there are no entries in the AGGyfilinctions that
do not correspond to any action profile;, a_;) in the normal form. This means that there
exists a many-to-one mapping from entries of the normal farutilities in the AGGH

Of course, the AGG representation has the extra overheaspoégenting the action graph,
which is bounded by.A|Z. But this overhead is dominated by the size of the inducedabr

5This is the most compact way of representing the utility fiows, but does not provide easy random access to the
utilities. Therefore, when we want to do computation usirg3@s, we may convert each utility functiarf* to a data
structure that efficiently implements a mapping from seqasrof integers to (floating-point) numbers, (e.g. trieshha
tables or Red-Black trees), with space complexity in theoad O (Z|C())).

Figure 2: AGG representation of an arbi- Figure 3: AGG representation of a three-
trary 3-player, 3-action game. action symmetric game.

form, n Hj |A;|. Thus, an AGG's asymptotic space complexity is never wdns@ that of an
equivalent normal form game.

Itis also possible to describe a reverse transformatidreth@odes any arbitrary game in nor-
mal form as an AGG. Specifically a unique nadanust be created for each action available to
each agent. ThusVa € A, c(a) € {0,1}, and¥i, > 4. c¢(a) must equal. The configura-
tion simply indicates each agent’s action choice, and esgg®no anonymity or context-specific
independence structure.

This representation is no more or less compact than the ndoma. More precisely, the
number of distinct configurations ovefa;) is the number of action profiles of the other players,
whichis][,_, [4;|. Sincei has|A;| actions,[[; [4;| payoff values are needed to represist
payoffs. So in totah]_[j |A;| payoff values are stored, exactly the number in the induceahal
form.

Example 2.8 (Normal-form game) Consider an arbitrary 3-player, 3-action game encoded as
an AGG (see Figure 2). Observe that there is always an edgecleet pairs of nodes belonging
to different action sets, and that there is never an edgedmtvmodes in the same action set.

2.4 Representing Graphical Games as AGGs

In a graphical game [Kearret al,, 2001] nodes denote agents and there is an edge connecting
each agentto each other agent whose actions can affsattility. Each agent then has a payoff
matrix representing his local game with neighboring ageiftss representation is more com-
pact than normal form whenever the graph is not a clique. Bcapgames can be represented
as AGGs by replacing each nod@ the graphical game by a distinct cluster of nodgsep-
resenting the action set of agentlf the graphical game has an edge frono j, edges must

be created in the AGG so thelt; € A;,Va; € Aj, a; € v(a;). The resulting AGGs are as
compact as the original graphical games. Furthermore, e that by removing more edges,
additional context-specific independencies can also hesepted.

Example 2.9 (Graphical game)Consider the AGG representation of a graphical game having
three nodes and two edges between them (i.e., player 1 agdriBado not directly affect each
others’ payoffs; see Figure 4). The AGG may appear more cexrtplan the graphical game;
however, this is only because players’ actions are drawti@i.

Figure 4: AGG representation of a 3-player, 3-action greglgame.

2.5 Representing Symmetric Games as AGGs

A symmetric game is one in which all players are identical andlilstinguishable. Symmetric
games exhibit anonymity structure: the utility of a playdronchose a certain action depends
only on the numbers of players who played each of the actid@&s can capture the anonymity
structure of symmetric games. An arbitrary symmetric gaaretee encoded as an AGG with
A; = Aforall: € N. The resulting action graph is a clique, iéa) = Aforall o € A.

For each action node, the size of its utility function.® is proportional to the number of
configurations of, — 1 players amon@A| actions (since at least one of the players is playihg
which is (”T)‘T‘JIQ). So in total the AGG representation needs to store pmyn‘jf‘j;?) utility
values. This is equal to the number of potentially distindity values in a symmetric game, and
much less than the size of the corresponding normal fornesemtationy|.4|™.

Example 2.10 (Symmetric game)Consider the AGG representation of arplayer, three-action
symmetric game (see Figure 3). The AGG has three action naltiel corresponds to the three
actions of the symmetric game. Each action node has all tieden nodes as neighbors.

2.6 Example: A Job Market

Here we describe another class of example games that camipacty represented as AGGs.
Unlike the Ice Cream Vendors game, the following examplesdua involve choosing among
actions that correspond to geographical locations.

Example 2.11 (Job Market game)Consider the individuals competing in a job market. Each
player chooses a field of study and a level of education toes€hiThe utility of playef is the
sum of:

e a constant cost depending only on the chosen field and edundatiel. This captures the
difficulty of the studies and the cost of tuition and forgoreges.

e avariable reward, depending on:

— the number of players who chose the same field and educavierds;,
— the number of players who chose a related field at the sameaéidndevel,
— the number of players who chose the same field at one leve¢avdelow:.

Computer Electrical Mechanical
Science Engineering Engineering

Figure 5: AGG representation of the Job Market game.

Figure 5 gives an action graph modeling one such job markemnado, in which there are
three fields, Computer Science, Electrical Engineering Bied¢hanical Engineering. For each
field there are four levels of postsecondary study: DiploBachelor, Master and PhD. Com-
puter Science and Electrical Engineering are considerddteel fields, and so are Electrical
Engineering and Mechanical Engineering. There is anottation representing high school ed-
ucation, which does not require a choice of field. The maxinmidegree of the action graph is
five, whereas a naive representation of the game as a synengetme (see Section 2.5) would
correspond to a complete action graph with in-degree 13.sTthis AGG representation is able
to take advantage of the anonymity as well as the contextfgpmdependence structure of the
game’s utility functions.

3 AGGs with Function Nodes

There are games with certain kinds of context-specific iedepnce structures that AGGs, as
defined in Section 2, are not able to exploit. In Example 3.kk@v a class of games with one
such kind of structure. In this section we extend the AGGesg@ntation by introducinfginction
nodesallowing us to exploit a much wider variety of utility struces.

3.1 Examples: Coffee Shops and Parity

Example 3.1 (Coffee Shop gamefonsider a game involving players; each player plans to
open a new coffee shop in a downtown area, but has to decideedlo¢ation. The downtown
area is represented bysax k grid. Each player can choose to open a shop located within any
of the B = rk blocks or decide not to enter the market. Conditioned ongalaghoosing some
locationc, her utility depends on:

e the number of players that chose the same block,

e the number of players that chose any of the surrounding slcakd

10

S Hiartour Park HEpr

Wap Satelite][_Hybnig

B [c]B 5]
<

50;??&"..3 .4
i $
o .
@ 2) 2 X ik
z Park S — g &y -
= s 7 7 %v 3 7
200 o 005 Gooale VWSS dats @200S WAVTEQ ™ TaiE NS

Figure 6: A Google map of coffee shops in downtown Vancouver.

e the number of players that chose any other location.

Figure 6 shows a Google map of coffee shops in downtown Vaegaguerhaps illustrating a
Nash equilibrium of the Coffee Shop game.

The normal form representation of this game hass|z8™ = n(B+1)". Since there are no
strict independencies in the utility function, the sizeltd graphical game representation would
be asymptotically the same. Let us now represent the ganreAaS&. We observe that if agent
i chooses an actiom corresponding to one of the locations, then her payoff is affected by the
configuration over alB locations. Hencey(«) must consist of3 action nodes corresponding to
the B locations. The action graph has in-dedgfee B. Since the action sets completely overlap,

the representation size@(|.A||C(*)|) = O (3%). If we hold B constant, this becomes

O(Bn?), which is exponentially more compact than the normal forrd tire graphical game
representation. If we instead haldconstant, the size of the representatio®{$3™), which is
only slightly better than the normal form and graphical gaepresentations.

Intuitively, the AGG representation is able to exploit apianity structure in this game. How-
ever, this game’s payoff function also has context-spestfigcture which the AGG does not
capture. Observe that* depends only on three quantities: the number of players Wwbsecthe
same block, the number of players who chose an adjacent,ldodkhe number of players who
chose another location. In other words, can be written as a functianof only three integers:
u () = g(e(@), > e c(@), 3 onen c(@”)) whereA’ is the set of actions surrounding
a and.A” the set of actions corresponding to other locations. BecthesAGG representation is
not able to exploit this context-specific information, itpdicates some utility values.

In the above example we showed a kind of context-specifiggaddence structure that AGGs
(as defined in Section 2) cannot exploit. There exist manylairaxamples in which the utility

11

functionsu® can be expressed as functions of a small number of interteguimameters. Here
we give one more.

Example 3.2 (Parity game) In a “parity game”, eachu® depends only on whether the number
of agents at neighboring nodes is even or odd, as follows:

1 , ! =0;

uo — > orev(a) () .mod 2=0;
0 otherwise.

Observe that in the Parity gamé& can take just two distinct values; however, the AGG repre-

sentation must specify a value for every configuration.

3.2 Definition of AGGFNs

Structure such as that in Examples 3.1 and 3.2 can be explwitein the AGG framework by
introducingfunction nodego the action grapliz. Now G’s vertices consist of both the set of
action nodesA and the set of function nodés i.e. G = (AUP, E). We require that no function
nodep € P can be in any player’s action set NP = {}. Thus, the total number of nodesdh

is | A|+ |P|. Each node in G can have action nodes and/or function nodesgisbors. For each

p € P, we introduce a functiorf? : C?) — R, wherec®) ¢ C®) denotes configurations over
p’s neighbors. The configuratiomsare extended to include the function nodes by the definition
c(p) = fP(cP). If p € P has no neighborgf? is a constant function. Intuitivelyp) is used

to describe intermediate parameters that players’ eslidepend on. To ensure that the AGG
is meaningful, the graply restricted to nodes i is required to be a directed acyclic graph
(DAG). This condition ensures that for allandp, ¢(«) ande(p) are well defined. To ensure that
everyp € P is “useful”, we also require thathas at least one outgoing edge. As before, for each
action nodex we define a utility function:® : C(®) — R. We call this extended representation
an Action Graph Game with Function Nodes (AGGFN), and defifarinally as follows.

Definition 3.3 (AGGFN) An Action Graph Game with Function Nodes (AGGFN) is a tuple
(N,A,P,G, f,u), where:

e N is the set of agents;
o A= TJ,cn Aiis the set of action profiles;

P is a finite set of function nodes;

G = (AUP, E) is an action graph, whergl = | J,. A is the set of distinct actions. We
require that the restriction of¥ to the nodesP is acyclic and that for every € P there
exists ann € AU P such that(p,m) € E;,

fis atuple(f?),cp, where eacly? : C®) — R is an arbitrary mapping from neighbors
of p to real numbers;

uis a tuple(u®),ec.a, Where eachi® : C(®) — R is theutility function for action .

12

3.3 Representation Size

Given an AGGFN, we can construct an equivalent AGG with timeesplayersV and actions4
and equivalent utility functions, but without any functiondes. We call this themduced AGG
of the AGGFN. There is an edge froni to « in the induced AGG either if there is an edge
from o’ to « in the AGGFN, or if there is a path froma to o through a chain consisting entirely
of function nodes. From the definition of AGGFNSs, the utilidf/playing actiona is uniquely
determined by the configuratieff), which is uniquely determined by the configuration over the
actions that are neighbors afin the induced AGG. As a result, the utility tables of the indd
AGG can be filled in unambiguously.

What is the size of an AGGFKWV, A, P, G, f,u)? How does it compare with the size of its
induced AGG? We will give some formal answers presently; éx@w, let us begin by building
some intuition by considering each component of the reptasen.

e Asdiscussed in Section 2.3, andA can be represented efficiently; by a similar argument,
so canp.

e The action grapld- of the AGGFN contains the extra function nodes compared toitin-
terpart in the induced AGG. The space complexity of the adjiaph become®((].A| +
|P))?), i.e., polynomial in.A| and|P|.

e The number of utility values stored in an AGGFN is no gredtantthe number of utility
values in the induced AGG. We can show this by argumentsairtolthose used earlier,
establishing a many-to-one mapping from utilities in the@\&presentation to utilities in
the AGGFN. Define theangeof f? asR(f?) = {fP(c®)) : ¢ € ¢®)}, Intuitively, in
order for the utility functions of the AGGFN to be significgnsmaller than those of the
induced AGG, there must exist somes P such that the range gf? is a significantly
smaller set than its domaifi’?). We wantf? to map into a single value those configura-
tions that have identical effects on the utilities of playin then we letp be a neighbor of
OL.G

o AGGFNs have to represent the functioffsfor eachp € P. In the worst case, these func-
tions can be represented as explicit mappings similar tatiliy functionsu®. However,
it is often possible to define these functions algebraidajflgombining elementary oper-
ations, as we do in most of the examples given in this papethigncase the functions’
representations require a negligible amount of space.

Now let us consider the representation size of AGGFNs maradtly. The following theo-
rem gives a sufficient condition for the representation gzee polynomial.

Theorem 3.4 A class of AGGFNSs has representation size bounded by a éungtilynomial in
n, |A| and|P| if the following conditions hold:

1. for all function nodey € P, the size ofp’s range |R(f?)| is bounded by a function
polynomial inn, |.A| and|P|; and

2. max,,c aup ¥(m) (the maximum in-degree in the action graph) is bounded bynstemt.

6Another source of compactness is the possibility that ipleltactions could share the same function node as a
neighbor. However, this form of structure can reduce theessmtation size by a factor of at m¢st| relative to the
induced AGG, so its usefulness is limited.

13

Proof. Given an AGGFN(N, A, P, G, f,u), it is straightforward to check that all compo-
nents except and f are polynomial im, |.A| and|P|.

First, consider an action node € A. Recall that the size of the utility functiom™
is C(@), Partitionv(a), the set ofa’s neighbors, inta/4(a) = v(a) N A andvp(a) =
v(«a) NP (action node neighbors and function node neighbors reilspggt Since for each
actiona’ € va(a), c(a’) € {0,...,n}, and for eachy’ € vp(a), c¢(p) € R(f?), then
C@ < (n+ YA o) [R(7)], which is polynomial since all action node in-
degrees are bounded by a constant.

Now consider a function nogec P. Without loss of generality, assume that its function
fPisrepresented explicitly as a mapping. (Any other reprediem of /¥ can be transformed
into this explicit representation.) The representatiae sif f* is thenC'?). Using the same
reasoning as above, we hawé¢”) < (n + 1)AWIT] _ - [R(f7)|, which is polynomial
since all function node in-degrees are bounded by a constant

When the functiong? do not have to be represented explicitly, we can drop theireaent
on the in-degree of function nodes.

Corollary 3.5 A class of AGGFNs has representation size bounded by a dungtilynomial in
n, |.A| and|P| if the following conditions hold:

1. forall function nodep € P, the functionf? has a representation whose size is polynomial
inn, |Al and|P|;

2. for each function nodg € P that is a neighbor of some action node the size ofp’s
range|R(f?)| is bounded by a function polynomialin |.4] and|P|; and

3. max,ea v(a) (the maximum in-degree among action nodes) is bounded bysiard.
A very useful type of function node is ttsgmple aggregator

Definition 3.6 (Simple aggregator) A function node < P is asimple aggregatdf each of its
neighbors/(p) are action nodes ang? is the summation functiory?(c(P)) = 2 mew(p) €(m).

Simple aggregator function nodes take the value of the tataiber of players who chose
any of the node’s neighbors. Since these functions can hfigokin constant space, and since
R(fP) = {0,...,n} for all p, Corollary 3.5 applies. That is, the representation siZe5G
GFNs whose function nodes are all simple aggregators aym@uaiial whenever the in-degrees
of action nodes are bounded by a constant. In fact, undeaiceassumptions we can prove an
even tighter bound on the representation size, analogolisdorem 2.6 for AGGs. Intuitively,
this works because both configurations on action nodes arfijooations on simple aggregators
count the numbers of players who behave in certain ways.

Theorem 3.7 Consider a class of AGGFNs whose function nodes are all siragregators.
For eachm € A U P, define the function

m m € A,

Bm) _{ v(m) otherwise.

Intuitively, 5(m) is the set of nodes whose counts are aggregated by modgfor eacha € A
and for eachm, m’ € v(a), 8(m) N B(m') = {} unlessm = m’ (i.e., no action node affects
« in more than one way), then the AGGFNS’ representation siredounded bYA|(”_;’I)
whereZ = max,ec 4 V()| is the maximum in-degree of action nodes.

14

Figure 7: A5 x 6 Coffee Shop game: Left: the AGG representation without fiemcnodes
(looking at only the neighborhood of). Middle: we introduce two function nodeg, (bottom)
andp” (top). Right:a now has only 3 neighbors.

Proof. Consider the utility function.® for an arbitrary actiorv. Each neighbom € v(«)

is either an action or a simple aggregator. Observe thatfigeoationc(®) € C(®) is a tuple

of integers specifying the numbers of players choosing eatibn in the sef(m) for each

m € v(a). As in the proof of Theorem 2.6, we extend each player’s seictibns to|.A],
making the game symmetric. This weakly increases the nupfleenfigurations. Since the
setsg(m) are non-overlapping, the number of configurations possiltlee extended action
space is equal to the number of (ordered) combinatorial esitipns ofn. — 1 into |v(a)|+1
nonnegative integers, which (§"1j(‘a”)(‘a)‘). This includes one bin for each action or simple

aggregator inv(«), plus one bin for agents that take an action that is neithes(dr nor
in the neighborhood of any simple aggregatora)). Then the total space required for

representing is bounded by.A|("1*7) whereZ = max,c4 [v(c)|. W

Consider the Coffee Shop game from Example 3.1. For eacbnactidex corresponding
to a location, we introduce two simple aggregator functiodes,p/, andp”. Letv(p.,) be the
set of actions surrounding, andv(p”) be the set of actions corresponding to other locations.
Then we sev/(a) = {a, pl,,p"}, as shown in Figure 7. Now eaef) is a configuration over
only three nodes. Since ea¢h is a simple aggregator, Corollary 3.5 applies and the sizkisf
AGGFN is polynomial inn and.A. In fact since the game is symmetric and f¢'s as defined
in Theorem 3.7 are non-overlapping, we can calculate thetesdue of|(C(*)| as the number of
compositions of: — 1 into four nonnegative integer% =n(n+1)(n+2)/6 = O(n?).
We must therefore storBn(n + 1)(n + 2)/6 = O(Bn?) utility values. This is significantly
more compact than the AGG representation without functmatess, which has a representation
size of O(B L=,

We can represent the parity game from Example 3.2 in a simidgr For each action we
create a function node,, and letv(p,) = v(a). We then modifyv(«) so that it has only one
memberp,. For each function node we definef” to be f7(c!?)) = 3=, ¢(a) mod 2.
SinceR(f?) = {0, 1}, Corollary 3.5 applies. In fact, each utility function justeds to store two
values, and so the representation siz@(§4|) plus the size of the action graph.

3.4 Representing Anonymous Games as AGGFNs

One property of the AGG representation as defined in SectibisZhat utility functionu® is
shared by all players who havein their action sets. What if we want to represent games with
agent-specifiatility functions, where utilities depend not only enand¢(®), but also on the
identityof the player playingv?

15

Figure 8: AGGFN representation of a game with agent-spadifity functions.

Researchers have studiadonymous gamesvhich deviate from symmetric games by al-
lowing agent-specific utility functions [Kalai, 2004; K&l2005; Daskalakis & Papadimitriou,
2007]. To represent games of this type as AGGs, we canndejusiultiple players share action
«, because that would force those players to have the santg fitiiction u®. It does work to
give agents non-overlapping action sets, replicating eation once for each agent. However,
the resulting AGG is not compact; it does not take advantédleeofact that each of the repli-
cated actions affects other players’ utilities in the samg.Wsing function nodes, it is possible
to compactly represent this kind of structure. We agairt spinto separate action nodes for
each playei able to take the action. Now we also introduce a function nodéh everya; as
a neighbor, and defing” to be the summation operator: a simple aggregator. Ngives the
total number of agents who chose actiprexpressing anonymity. Action nodes then inclpde
as a neighbor instead of eaah. This allows agents to have different utility functions katit
sacrificing representational compactness.

Example 3.8 (Anonymous game)Consider the AGGFN representation of an anonymous game
(see Figure 8). Consider two classes of players. Playenm fibe first class have action set
{A1, A2, A3, and share utility functions that lack any independencacitre. Players from

the second class have action $&1, B2, B3, and share utility functions with context-specific
independence structure as expressed by the absence of §tmegiossible edges from function
nodes to action nodes.

3.5 Example: Network Routing Game

In a network routing scenario, each player wants to trardsiga from a source node to a desti-
nation node in a computer network, and needs to choose atpatigh the network to do so. In
a simple and widely-studied model, the latency on each atiscemetwork is a function of the
number of players who chose a path containing that arc, apsaotal latency is the sum of
latencies along each arc in her chosen path, and a playéity istthe negative of the latency
along her chosen path. This model can be represented usiggstion games (see, e.g., [Rough-
garden & Tardos, 2002]). The set of facilities correspondé set of arcs of the network, and
an action corresponds to selecting a set of arcs that fornthaffmem source to destination. Itis
straightforward to see that as we have defined latencieseaboxgestion game utility functions
can represent each player’s total latencies.
However, not all network routing problems can be capturedeunhe utility model given

16

| 18 users:
| $0.10/s delay

$0

| 2 users:
I $1.00/s delay

Figure 9: AGGFN representation of the network routing game.

above, and in many of these cases, the interaction cease®iplessible as a congestion game.
AGGFNs can model more general network routing scenariofiewsltill capturing the game’s
utility structure. Specifically, consider a case where ptayhave different preferences over the
network’s “quality of service.” This example is taken frohdmpsonret al. [2007]; it is the
simplest of several problems considered in that work.

Example 3.9 (Network Routing game)Consider a very simple network having one source node,
one destination node, and two parallel arcs from the souodli¢ destination. The two arcs are
physically identical, and so have the same latency funstiblowever, one of the arcs has a toll

of $1 while the other arc is free. Further consider two differel#sses of network users. Each
user of clasg has a (negative) value; for each unit of latency experienced. A player’s total
utility for choosing patHI is thereforev; Ly — T11, whereL ; is the total latency of the path, and
T7 is the toll for that path. Note that the total utility is negat. Unlike the Coffee Shop game
example, the users don’t have the choice of staying out aféheork. So in this case maximizing
utility means choosing a path with minimum cest; Ly + 71;.

This situation cannot be represented as a congestion gahike ilvcan be efficiently repre-
sented as an AGGFN. Figure 9 shows the action graph of thissgdimere are two action nodes
for each class of players, corresponding to the two posgibkibs. There are also two simple
aggregator function nodes, which represent the numbersageps that chose each of the arts.

4 AGGFNs with Additive Structure

So far we have assumed that the utility functiafts: C(®) — R are represented explicitly, i.e.,
by specifying the payoffs for al®) € C'(®). This is not the only way to represent a mapping; the
utility functions could be defined as analytical functiodscision trees, logic programs, circuits,
or even arbitrary algorithms. These alternative reprediems might be more natural for humans
to specify, and in many cases are more compact than the gxplicesentation. However, this

“The example can be generalized to longer paths. Howevéitisioase utility functions exhibit additivity across arcs.
This means that we cannot achieve full representationapectness by using AGGFNs, but instead must use AGGFNs
with additive structure, defined in Section 4.

17

extra compactness does not always allow us to reason macieeffy with the games. In this
section, we look at utility functions withdditive structure These functions can be represented
compactly and do allow more efficient computation.

4.1 Definition of AGGFNs with Additive Structure

We say that a multivariate function hadditive structuref it can be written as a (weighted) sum
of functions of subsets of the variables. This form allowmpact representation because we
only need to represent the summands, which have lower dioralgy than the entire function.
Furthermore, due to the linearity of expectation, when wamuate the expected values of such
functions, we can just compute the expected values of thermuds and take the weighted sum
of the results.

Utility functions with additive structure appear in manyndains. Previously, researchers
have proposed several game representations that aim toitexlity functions with additive
structure. For example, in@olymatrix gameeach player’s utility is the sum of payoffs from
separate bimatrix games between her and each of the otlyergldn a congestion game, each
player’s cost is the sum of the costs at each facility she hasem. Each of these representations
is able to exploit a specific form of additive structure, baiunable to exploit other forms of
additive structure. In this section we present a unifiedesgntation of additive utility functions
within our AGG framework.

We extend the AGGFN representation by allowiyto be represented as a weighted sum
of the configuration of the neighbors af

Definition 4.1 A utility functionu® of an AGGFN isadditiveif for all m € v(«a) there exist
Am € R, such that

u()= Y Ane(m). (4.1)

mev(a)

Such an additive utility function can be represented as dpget(\,,),,c, (o). This is a very
versatile representation of additivity, because the r@ghofa could be function nodes. Thus
additive utility functions can represent weighted sumsrbiteary functions of configurations
over action nodes.

We now formally define an AGGFN representation where sométitility functions are
additive.

Definition 4.2 An AGGFN with additive structures a tuple(N, A, P, G, f, A, A, u) where
e N, A P, G, f are as defined in Definition 3.3.
e A, C Aisthe set of actions whose utility functions are additive.

o A= (A")q,ca,,where each*+ = (/\‘;“n*)me,,(a) is the tuple of coefficients represent-
ing the additive utility functiom“+.

o u = (u¥)aea\ 4, Where eachu® is as defined in Definition 3.3. These are the non-
additive utility functions of the game, which are represergxplicitly.

18

4.2 Representation Size

We only needv(«)| numbers to represent the coefficients of an additive utflityction v,
whereas the explicit representation requi€&*)| numbers. Of course we also need to take
into account the sizes of the neighboring function noges v («) and their corresponding
functions f?, which represent the summands of the additive functionchBé either has a
simple description requiring negligible space, or is reprged explicitly as a mapping. In the
latter case its size can be analyzed the same way as utilitifuns on action nodes. That is,
when the neighbors qf are all actions then Theorem 2.6 applies; otherwise theuggon in
Section 3.3 applies.

4.3 Representing Congestion Games as AGGFNs with Additivetfacture

A congestion game is a tupleV, M, (A;)ien, (Kjk)jem k<n), WhereN = {1,...,n} is the
set of playersM = {1,...,m} is a set of facilities (or resources); is player:'s set of actions;
each actioru; € A; is a subset of the facilitiess; C M. Ky, is the cost on facilityj when

k players have chosen actions that include facilityror notational convenience we also define
K;(k) = Kj. Let#(j, a) be the number of players that chose facilitgiven the action profile
a. The total cost, or disutility of playerunder pure strategy profite= (a;,a_;) is the sum of
the cost on each of the facilities i,

Costi(ai,a_;) = —ui(ai,a—;) = »_ K;(#(j,a)). (4.2)

Jj€a;

Congestion games exhibit a specific combination of anonyamt additive structure, which
allows them to be represented compactly. Only numbers are needed to specify the costs
(Kjx)jemk<n- The representation also needs to specify)Xhe . |A;| actions, each of which
is a subset of\/. If we use anm-bit binary string to represent each of these subsets, the to
size of the congestion game representatian(igin 4 m Y,y [Ai).

An arbitrary congestion game can be encoded as an AGGFN withss of compactness,
where allu® are represented as additive utility functions. Given a estign game N, M,
(Ai)ien, (K k) jem, k<n), We construct an AGGFN with the same number of players anegsam
number of actions for each player as follows.

e Create) .y |A;| action nodes, corresponding to the actions in the congegtime. In
other words, the action sets do not overlap.

e Create2m function nodes, labelets, ..., pm, q1,--.,qm). For eachj € M, there is an
edge fromp; to ¢;. For allj € M and for alla € A, if facility j is included in actiorny
in the congestion game, then in the action graph there is @@ fedm the action node to
pj, and also an edge fromp) to a.

o For eactp;, definec(p;) = Zaey(j) c(a), i.e.,p; is a simple aggregator. Since its neigh-
bors are the actions that includes faciljtythusc(p;) is the number of players that chose

facility j, which is#(j, a).

o Assign eacly; only one neighbor, namejy;, and define(q;) = f% (c(p;)) = K;(c(p;))-
In other words¢(q;) is exactlyK;(#(j, a)), the cost on facility;.

19

Figure 10: Left: a two-player congestion game with thredlifags. The actions are shown
as ovals containing their respective facilities. Righte WGGFN representation of the same
congestion game.

e For each action node, represent the utility function® as an additive function with weight
—1 for each of its neighbors,

w()= 3" (i) =- > Ki(#(j,a)). (4.3)

jev(a) jev(a)

We can see immediately that the resulting AGGFN expressesame utility function as the
congestion game.

Example 4.3 (Congestion game)lConsider the AGGFN representation of a two-player conges-
tion game (see Figure 10). The congestion game has threéiésciabeled{1, 2, 3}. Player A
has actions A1£1} and A2={1, 2}; Player B has actions B1{2, 3} and B2={3}.

Now let us consider the representation size of this AGGFNsuostantiate our claim that
it is asymptotically the same size as the congestion game= attion graph hag4| + 2m
nodes and(m/|.A|) edges; the function nodes, . . ., p,, are simple aggregators and each only
requires constant space; eath requiresn numbers to specify so the total size of the AGGFN
is O(mn + m|A|) = O(mn +m),y |As|). Thus this AGGFN representation has the same
space complexity as the original congestion game repratsemt

When some of the actions correspond to the same set of ilegilit is possible to let them
share the same action node in the AGGFN. The rest of the cmtistn does not need to change;
the resulting AGGFN has siz@(mn + m|Al). Since|A| < >, |A;| in this case, the AGGFN
can be smaller than its corresponding congestion gamesepiagion.

One extension of congestion gamegplsyer-specific congestion gamesalyzed by Milch-
taich [1996] and Monderer [2007]. Instead of all playersihgthe same cost& j, in a player-
specific congestion game each player has a different setstd.cbhis can be easily represented
as an AGGFN similar to the above construction, but using gemdint set of function nodes
Gi1, - - -, Qim fOr each playet.

4.4 Representing Polymatrix Games as AGGFNs with Additive Bucture

A polymatrix game can be compactly represented as an AGGRN additive structure. The
encoding is as follows. The AGGFN has non-overlapping acsiets. For each pair of players
(i,7), we create two function nodes to represérnd j's payoffs under the bimatrix game
between them. Each of these function nodes has incomingédoua all ofi’s and;’s actions.
For each playef and each of his actions, there are incoming edges from the- 1 function

20

Figure 11: AGG representation of a three-player polymajeme. Function nod& 4 repre-
sents player A's payoffs in his bimatrix game against B, &iady represents player B’s payoffs
in his bimatrix game against A, and so on. To avoid clutter wadt show the edges from the
action nodes to the function nodes in this graph. Such edgstsi®mm A and B’s actions t&/ 4 5
andUg4, from A and C’s actions td&/ 4 andUc 4, and from B and C’s actions tbz- and
Ues.

nodes representings payoffs in his bimatrix games against each of the otheygya v is an
additive utility function with weights equal to 1. Based agaments similar to those in Section
2.3, this AGGFN representation has the same space compéexthe total size of the bimatrix
games.

Example 4.4 (Polymatrix game) Consider the AGGFN representation of a three-player poly-
matrix game, given in Figure 11. Each player’s payoff is thesf her payoffs i x 2 game
with played with each of the other players; she is only abletioose her action once. This
additive utility function can be captured by introducingumétion nodel;; to represent each
playeri’s utility in the bimatrix game played with playgr

4.5 Representing Local Effect Games as AGGFNs with Additiv&tructure

Local Effect Games (LEGS), proposed by Leyton-Brown andhéamoltz [2003], were the first
action-based graphical representation of games, and fvamcke seen as precursors to AGGs.
However, LEGs have restricted utility functions, and hecaenot represent all games. Further-
more, despite the similarities between AGGs and LEGs, thradocannot compactly encode the
latter. Here we show that LEG&nbe compactly encoded as AGGs with additive structure.
First, we define LEGs. We begin with a graph whose nodes quonekto the actions of the
game. Each player can choose any one of the nodes. Confansate defined in the same
way as in AGGs. There is a node functiéip associated with each node which maps the
number of players choosing noéi¢o a real number. There is an edge functigy),, associated
with each edgék, m) of the graph, which maps the configuration over nadesdm to a real
number. Finally, the utility of a playerchoosing nodé: is the sum of the node functidiy, and

21

all incoming edge functions, evaluated at the current candigonc,

Unle(k) + Y Unple(m), c(k)).

mev(k)

Now we give the encoding of an LEG as an AGGFN with additivecttire. The action graph
of the AGGFN has the same set of nodes as the LEG. For eachknagecreate a function node
in the AGGFN to represent the node functigp. For each edgék, m) in the LEG we create a
function node in the AGGFN to represent the edge funatipp,. The neighbors of each action
nodek in the AGG are the function nodes correspondingj@nd incoming edge functions,,
in the LEG. Each action node’s utility function is then an iigld utility function. Since it takes
O(n) numbers to specify each node function &g:?) numbers to specify each edge function,
the sizes of an LEG and its corresponding AGGFN representatie bothO(|C|n + |E|n?),
where| E| is the number of edges in the LEG.

4.6 Example: Congestion Games with Action-Specific Rewards

So far, we have showed that AGGFNs with additive structurebsaused to bring existing game
representations within the AGG framework. Of course, agoltey advantage of our approach is
the ability to compactly represent games that would not e compact under these existing
game representations. In Footnote 7 we briefly describegplication of AGGFNs with addi-
tive structure to modeling network routing games with Valieaquality of service. We now give
another example in more detail.

Example 4.5 (Congestion game with action-specific rewardsfonsider the following game with
n players. As in a congestion game, there is a set of facilitie®ach action involves choosing a
subset of the facilities, and the cost for faciljtdepends only on the number of players that chose
facility 7. Now further assume that, in addition to the cost of usingfétudities, each playei
also derives some utiliti; depending only on her own action, i.e., the set of facilisies chose.
This utility is not necessarily additive across facilitie¥hat is, in general ifA, B € M and
ANB=10,R;,(AUB) # R;(A) + R;(B). Soi’s total utility is

ui(a) = Ri(ai) = Y Kj(#(j,a). (4.4)

JjEa;

This game can model a situation in which the players use tiktias to complete a task, and the
utility of the task depends on the facilities chosen. Anatiterpretation is given by Ben-Sasson
et al.[2006], in their analysis of “congestion games with stragempsts,” which also have exactly
this type of utility function. This work interpreted (thegaéive of)R;(a;) as the computational
cost of choosing the pure strategyin a congestion game.

This game cannot be compactly represented as a congestina gaa player-specific con-
gestion gamé, but it can be compactly represented as an AGGFN. We cigated;| action
nodes, giving the agents nonoverlapping action sets. We slaown in Section 4.3 that we can
use function nodes and additive utility functions to repréghe congestion-game-like costs. Be-
yond this construction, we just need to create a functionengdor each playeri and define
¢(r;) to be equal taR;(a;). The neighbors of; arei’s entire action setv(r;) = A;. Since the

8|nterestingly, Ben-Sassaet al. [2006] showed that this game belongs to the set of potendialeg, which implies
that there exists an equivalent congestion game. Howeuidjrg such a congestion game from the potential function
following Monderer and Shapley’s [1996] construction gielan exponential number of facilities, meaning that this
congestion game representation is exponentially largar the AGGFN representation presented here.

22

action sets do not overlap, there are on};| distinct configurations oved;. In other words,
|C(r)| = |A;| and we need only)(|A;|) space to represent eadR;. The total size of the
representation i€)(mn +m .y [Aql).

5 Computing Expected Payoff with AGGs

So far we have concentrated on how AGGs may be used to comypeatesent games of interest.
But compact representation is only half the story. We now tatthe question of how to leverage
this representational compactness in the computation wiegieoretic quantities of interest.
We focus on the computational task of computing an agenpeebed payoff under a mixed
strategy profile. While this quantity can be important irelitsit is even more important as
an inner-loop problem in the computation of many game-thgoguantities. Some examples
include computing best responses, Govindan and WilsonBragation methods for finding Nash
equilibria [Govindan & Wilson, 2003; Govindan & Wilson, 240 the simplicial subdivision
algorithm for finding Nash equilibria [van der Laahal,, 1987], and Papadimitriou’s algorithm
for finding correlated equilibria [Papadimitriou, 2005].

In the rest of this section, we first introduce our expectgobffalgorithm for the basic AGG
representation introduced in Definition 2.4. Then in Sexi®.7 and 5.8 we extend our algorithm
to AGGFNs and AGGFNs with additive utility functions, resgieely.

5.1 An Algorithm for Computing Expected Payoff

We must begin by introducing some notation. &fX') denote the set of all probability distri-
butions over a seX. Define the set of mixed strategies foas>; = ¢(4;), and the set of all
mixed strategy profiles as = [, ¥i. Denote an element af; by o;, an element oF by o,
and the probability that plays actiony aso;(«). Thesupportof a mixed strategy; is the set
of pure strategies played with positive probability (imure strategies; for whicho;(a;) > 0).

Now we can write the expected utility to agerfor playing pure strategy;, given that all
other agents play the mixed strategy profile;, as

Viloi)= > wilas,a i) Pr(a_los), (5.1)
a_;€EA_;
Pr(a_;|lo—;) = Haj(aj). (5.2)
i

Note that Equation 5.2 gives the probability @f, under the mixed strategy_,. In the rest
of this section we focus on the problem of computlrjg(a_i) giveni, a; ando_;. Having
established the machinery to compﬂi{g(o—_i), we can then compute the expected utility of
playeri under a mixed strategy profiteas)_,, ., oi(a;)Vy, (o).

One might wonder why Equations (5.1) and (5.2) are not theddrtie story. However,
notice that Equation (5.1) is a sum over the 4et of action profiles of players other thanThe
number of terms iﬂ#i |A;], which grows exponentially in. Thus Equation (5.1) corresponds
to an exponential-time algorithm for computif, (7_;). If we were to use the normal form
representation, there really would pé_;| different outcomes to consider, each with potentially
distinct payoff values. Thus, using normal form the evadrabf Equation (5.1) would be the
best possible algorithm for computiiig§,. Since AGGs are fully expressive, the same is true
for games without any structure represented as AGGs. Howen®t about games that are

23

exponentially more compact when represented as AGGs than wdpresented in the normal
form? For these games, evaluating Equation (5.1) amouts &xponential-time algorithm.

In this section we present an algorithm that given gny;, ando_;, computes the expected
payoff V;’i (o_;) in time polynomial in the size of the AGG representation. thes words, our
algorithm is efficient if the AGG is compact, and requiresdigxponential im if it is not. In
particular, recall from Theorem 2.6 any AGG with maximundiegree bounded by a constant
has a representation size that is polynomial.if\s a result our algorithm is polynomial infor
such games.

5.1.1 Exploiting Context-Specific Independence: Projeabin

First, we consider how to take advantage of the contextisp@udependence structure of the
AGG, i.e., the property thats payoff when playing:; only depends on the configurations over
the neighborhood of. The key idea is that we carrojectthe other players’ strategies onto a
smaller action space that is strategically the same fronpdiiret of view of an agent who chose
actiona,. That is, we construct a graph from the point of view of an agéro took a particular
action, expressing his sense that actions that do not dffecthosen action are in a sense the
“same action.” This can be thought of as inducing a contpre#ic graphical game. Formally,
for every actiony € A define a reduced gragh(®) by including only the nodes(«a) and a new
node denoted. The only edges included ifi¢* are the directed edges from each of the nodes
v(«a) to the nodex. Playerj’s actiona; is projected to a nod@§.a) in the reduced grap& () by

the following mapping:

@ _ J aj aj€v(a)
a :{ 0 a dvla) - (5.3)

In other words, actions that are notii«) (and therefore do not affect the payoffs of agents

playinga) are projected onto a new actidh, The resultingorojectedaction setA§a) has cardi-
nality at mostmin(|4;|, |v(a)| +1). This is illustrated in Figure 12, using the Ice Cream Vendor
game described in Example 2.5.

We define the set of mixed strategies on the projected acﬁbAEg) by Eg.o‘) = @(AEO‘)).

A mix_ed strategyr; on the original action sed; is projected tajga) € Zga) by the following
mapping:
(@), (a)y _ oj(aj) aj € v(a)
oy (ay) = a 5.4
;@) { Seanpmas(@) al® =0 o

So givena; ando_;, we can computer(_“;) in O(n|A|) time in the worst case. Now we can
operate entirely on the projected space, and write the ésgp@ayoff as

Vi(o_;) = Z u (ai,C(‘“)(ai, a_i)) Pr (a(ff)

a(al»"L)EA(,af)

) Tl 4.

J#i

U(f;)) ,

The summation is oveA(f;), which in the worst case hasv(a;)| + 1)»~1) terms. So for
AGGs with strict or context-specific independence strLe:tuomputingvji (o—;) in this way is
exponentially faster than doing the summation in (5.1)adiye However, the time complexity of
this approach is still exponential in

24

s{en

L i T pe———

Figure 12: Projection of the action graph. Left: action drab the Ice Cream Vendor game.
Right: projected action graph and action sets with respettte action C1.

5.1.2 Exploiting Anonymity: Summing over Configurations

Next, we want to take advantage of the anonymity structuth®fAGG. Recall from our dis-
cussion of representation size that the number of distiofigurations is usually smaller than
the number of distinct pure action profiles. So ideally, waina compute the expected payoff
V;'i (o_;) as a sum over the possible configurations, weighted by thefrgbilities:

i) — N, olai) (ai)| 5 (ai))
Vi (o-3) C(a”ezc(ai’i) U; (a“ ¢) Pr (c |o) , (5.5)
Pr (o) = 3 ﬁ o;(a;). (5.6)
j=1

a

C(al)(a) — C(ai)

wheres (@) = (a;, ') andPr(c(*)|5(4)) is the probability of:(@:) given the mixed strategy
profile o(¢), Recall thatC(*:%) is the set of configurations ovefa;) given thati playeda;.

So Equation (5.5) is a summation of sigg(®*)|, the number of configurations given that
playeda;, which is polynomial inn if |v(a;)| is bounded by a constant. The difficult task is
to computePr(c(*)|a(®)) for all ¢(i) € C(*+9), j.e., the probability distribution ovef' ()
induced byo(#), We observe that the sum in Equation (5.6) is over the set attibn profiles
corresponding to the configuratieff). The size of this set is exponential in the number of
players. Therefore directly computing the probabilitytdizition using Equation (5.6) would
take exponential time in.

Can we do better? We observe that the players’ mixed stestege independent, i.e.,is a
product probability distribution(a) = [, o:(a;). Also, each player affects the configuration
independently. This structure allows us to use dynamicramogning (DP) to efficiently compute
the probability distributiorPr(c(*)|o(1)). The intuition behind our algorithm is to apply one
agent’s mixed strategy at a time, effectively adding onenaigea time to the action graph. Let
a%“i denote the projected strategy profile of agefis...,k}. Denote byC,g‘“) the set of
configurations induced by actions of agefits. .., k}. Similarly, writec,(fi) € C,i‘“). Denote
by P, the probability distribution orC{*) induced bys{""), and by P;[c] the probability of
configuratione. At iteration k of the algorithm, we comput&;, from P,_; and a,i‘“). After

25

Algorithm 1 Computing the induced probability distributi®r(c(e)|g(e:)).

Algorithm ComputeP
Input: a;, o(®)
Output: P, which is the distributioPr(c(@)|o(@)) represented as a trie.
céai) =(0,...,0)
Pylci")] = 1.0 // Initialization: C*") = {c{"}
for k = 1ton do
Initialize P; to be an empty trie
for all c “7) from Pk 1 do

for all a\" eA) such that* (a!*") > 0 do
(aw) (ai

|f a o) (Z) then
c,(c‘“)((a;)) +=1// Apply act|ona(“)
end if
if Py [c,(;“)] does not exist yehen
Pl = 0.0
end Ef i) (ai) (ai) ¢, (a:)
Peley"] 4= Pea[e1] x 0" (a")
end for
end for
end for
returnpP,

iterationn, the algorithm stops and returi#%. The pseudocode of our DP algorithm is shown
as Algorithm 1.

Eachc,(fi) is represented as a sequence of integerg,96 a mapping from sequences of in-
tegers to real numbers. We need a data structure to margpuieh probability distributions over
configurations (sequences of integers) which permits gleickup, insertion and enumeration.
An efficient data structure for this purpose i@ [Fredkin, 1962]. Tries are commonly used in
text processing to store strings of characters, e.g. aedaries for spell checkers. Here we use
tries to store strings of integers rather than charactesth Bokup and insertion complexity is
linear in|v(a;)|. To achieve efficient enumeration of all elements of a trie store the elements
in a list, in the order of their insertion.

Our algorithm for computing{ji (o—;) is summarized in Algorithm 2.

5.2 Proof of correctness

The correctness of Algorithm 1 is not immediately obviousis Istraightforward to see that in
iterationk, Algorithm 1 computes

Ve, € C) Pylex] = 3 Proilcr 1] x o (@\™)), (5.7)

Ck—l;a;ai) :C(ai)(ck—laa;ai)):Ck

whereC(@) (¢;,_1, ak) denotes the configuration resulting from applykig projected action
(“) to the configuratiomy_, € C(“

26

Algorithm 2 Computing expected utiIitV;’i (o_i), givena; ando_;.

1. for eachj # i, compute the projected mixed strate:;ﬁ?‘) using Equation (5.4):

(ai)(a(ai)) _ a'j(aj) CLJ E v(a;)
ZOC,GAJ'\U(G..L’) 0j (a/) =0

2. compute the probability distributidpr(c(¢) (‘“) by following Algorithm 1.

3. calculate the expected utility using the following wetgghsum (Equation (5.5)):

Vaii (0_i) = Z u; (ai, c(‘“)) Pr (c(‘“) o i)) .

clai) eclas,i)

On the other hand, the probability distribution 6;5“7‘) induced byo . is by definition

k
Pr(eklor. k) = Z Haj(aj). (5.8)

ar.. .x:C@) (ay.. k)=c, I=1

Now we prove that Algorithm 1 indeed computes the correcbahbility distribution, i.e.,
Py [cx] as defined by Equation (5.7) is equalRo(c|o1.. k).

Theorem 5.1 For all k, and for all¢c;, € O,g‘“), Pylcr] = Pr(ek|or.. k).

Proof by induction on . Base caseApplying Equation (5.7) fok = 1, itis straight-
forward to verify thatP; [¢1] = Pr(c1|o1) forall ¢ € Of‘“
Inductive case Now assume’;, 1 [cx—1] = Pr(cg—1|o1...k—1) forall cx—1 € C,g"ji.

Pk [Ck] = Z Pkfl[ckfl] X ak(ak) (59)

Ch—1,Qk :
Clcr—1,ar) = cx

k—1
= > or(ar) x 3 [[oi@)| 10

Cho1, Gk ar..k-1:Clar. p—1)=cp—1 J=1

Clex—1,ar) = cx

k
= > > o) (5.11)

cp—1,a5:C(cp—1,ax)=cp \ai..k—1:Clai. p—1)=cr—1J=1

= 2 DD Yt van=ead " Lctor ni)=men] HGJ a;) (5.12)

ay...k—1 Qg Ck—1

= Z Zlc(ck var)=ci] * Le(ar 1) =ci1] HUJ (a;) (5.13)

al.. .k Cr—1

27

E

- Z [C(ar...k)=ck] H (5.14)

ai.. .k Jj=1

> H 7;(a;) (5.15)

ar. k:Clar. k)=c j=1

= Pr(cglor. k) (5.16)

Note that from Equation (5.12) to Equation (5.13) we use #leethat given an action profile
a1..,_1, there is a unique configuratiep_, C,g"ji such thaty, 1 = C)(ay. x_1).

5.3 Complexity

Let C(*9)(s_;) denote the set of configurations owefu;) that have positive probability of
occurring under the mixed strate@y;,o_;). In other words, this is the number of terms we
need to add together when doing the weighted sum in Equa&ih Whens_; has full support,
C(aiti) (0’71) e C(aivi)

Theorem 5.2 Given an AGG representation of a gamiss expected payoff/ji (o0_;) can be
computed in time polynomial in the size of the represematibZ, the in-degree of the action
graph, is bounded by a constaiif; (c_;) can be computed in time polynomiakin

Proof. Since looking up an entry in a trie takes time linear in thee 93¢ the key, which
is |v(a;)| in our case, the complexity of doing the weighted sum in Equa(5.5) is
O(l(a:)||C) (o_3)]).

Algorithm 1 requiresn iterations; in iterationk, we look at all possible combina-

(aw

tions of ¢;'; and a;‘“), and in each case do a trie look-up which co&t§v(a;)l).
S|nce|,4,(f (a;)| + 1, and |C(™) (@:9)|, the complexity of Algorithm 1 is

O(n|v(a;)?|C@D (o). This dominates the complexity of summing up Equation (5.5)
Adding the cost of computing) , we get the overall complexity of expected payoff com-
putationO(n| Al +n|1/()|?|C ‘W>(-)|)

Since|C(:) (g_;)| < |Cla:)
stored in payoff function®:, this means that expected payoffs can be computed in polyno-
mial time with respect to the size of the AGG. Furthermore,algorithm is able to exploit
strategies with small supports which lead to a sij@i*) (¢_;)|. Since|C(*!)| is bounded

by % this implies that if the in-degree of the graph is boundedmonstant,

then the complexity of computing expected payoff®is:|.A| + n’+1). m

The proof of Theorem 5.2 shows that besides exploiting tmepaxtness of the AGG repre-
sentation, our algorithm is also able to exploit the casesrevthe mixed strategy profiles given
have small support sizes, because the time complexity disgarC(*%) (o_;)| which is small
when support sizes are small. This is important in pracsicese we will often need to carry out
expected utility computations for strategy profiles withadinsupports. Porteet al. [2008] ob-
served that quite often games have Nash equilibria withlssopport, and proposed algorithms
that explicitly search for such equilibria. In other aldgbms for computing Nash equilibria such

28

as Govindan-Wilson and simplicial subdivision, it is alagtg often necessary to compute ex-
pected payoffs for mixed strategy profiles with small suppor

Of course it is not necessary to apply the agents’ mixedegjias in the order . . . n. In fact,
we can apply the strategies in any order. Although the nurmabeonfigurationgC (%) (o_;)|
remains the same, the ordering does affect the interme:ﬁafﬂgurationsﬁ,i“i). We can use the
following heuristic to try to minimize the number of interdiate configurations: sort the players
by the sizes of their projected action sets, in ascendingroithis would reduce the amount of
work we do in earlier iterations of Algorithm 1, but does nbange the overall complexity of
the algorithm.

In fact, we do not even have to appyeagent’s strategy at a time. We could partition the
set of players into subgroups, compute the distributiodsided by each of these subgroups,
then combine these distributions together. Algorithm 1lmastraightforwardly extended to deal
with such distributions instead of mixed strategies of kragents. In Section 6.2 we apply this
approach to compute Jacobians efficiently.

5.4 Relation to Polynomial Multiplication

We observe that the problem of computiPg c|o(*)) can be expressed as one of multiplication
of multivariate polynomials. For each action nade v(q;), letz,, be a variable corresponding
to . Then consider the following expression:

H cr,(cai)((/))—i- Z aliai)(ak)xak . (5.17)
k=1

ar€ARNV(a;)

This is a multiplication ofn multivariate polynomials, each corresponding to one playwo-
jected mixed strategy(‘“) This expression expands to a polynomial of variapies),c, (a,)-
Each term of the polynomial can be identified by the tuple gfaments of ther,, variables.

It is straightforward to verify that the set of terms exadttyrresponds to the set of configu-
rationsC(#)) where each term’s tuple of exponents corresponds to a cwafignc(®) =
(c(a),c(a’),...). The coefficient of the term with exponents C(*9 is

> (M)

ale):0(@) (q(@))=¢

which is exactlyPr(c|o(@)) by Equation (5.6)! So the whole expression in Equation (5.17

evaluates to
Z Pr(c|o(® H (@),
ceCl(@iri) acv(a;)

Thus the problem of computingr(c|o(@)) is equivalent to the problem of computing the coef-
ficients of the polynomial in Equation (5.17). Our DP alglonit corresponds to the strategy of
multiplying one polynomial at a time. That is, at iteratibrwe multiply the polynomial corre-
sponding to playek’s strategy with the expanded polynomiallof. . (k — 1) that we computed
in the previous iteration.

5.5 Symmetric games

As described in Section 2.5, if a game is symmetric it can peasented as an AGG with; = A
forall i € N. Given a symmetric game, we are often interested in comgetipected utilities

29

undersymmetriamixed strategy profiles, where a mixed strategy prefiis symmetric ifo; =
o; = o, foralli,5 € N. In Section 6.2.2 we will discuss algorithms that make usexpiected
utility computation under symmetric strategy profiles tanpute symmetric Nash equilibrium
of symmetric games.

To compute the expected utiliwai_ (o), we could use the algorithm we proposed for general
AGGs under arbitrary mixed strategies, which requires fmkynomial in the size of the AGG.
But we can gain additional computational speedup by explpthe symmetry in the game and
the strategy profile.

As before, we want to use Equation (5.5) to compute the erpadility, so the crucial task
is again computing the probability distribution over puif configurationsPr(c(®)|g (%)),
Recall thats() = (a;,0'"). DefinePr(c(®)|o{*") to be the distribution induced by,

—1

the partial mixed strategy profile of players other thaeach playing the symmetric strategy
o{*). Once we have the distributioPr(c(a)|s{*")), we can then compute the distribution
Pr(c(*)|a () straightforwardly by applying players strategya,. In the rest of this section
we focus on computingr(c(@:)|o{*").

DefineS(c(*)) to be the set containing all action profile§:) such thatC(a(®)) = ¢(®),
Since all agents have the same mixed strategies, each gioe pofile inS(c(@)) is equally
likely, so for anya(*) € S(cle))

Pr (c(‘“) Ufkai)) = ‘S(C(‘“))‘ Pr (a(‘“) criai')) , (5.18)
Pr (a(‘“) a(kai)) = H (Uiai)(a))c(ai)(o‘). (5.19)
ac Alei)

The sizes of5(c(*/)) are given by

5 (c=)| = HQGAEZ)_(j(‘)Z!i)(a))” (5.20)

which is the multinomial coefficient.

Better still, using a Gray code technique we can avoid reetalg these equations for every
cl@) e ¢(@), Denote the configuration obtained frafti?) by decrementing by one the number
of agents taking action € A(*) and incrementing by one the number of agents taking action
o € Al ggelad)’ = E‘;ﬁa,). Then consider the graphi~«.,, whose nodes are the elements

of the setC(¢), and whose directed edges indicate the effect of the operati — o). This
graphis a regular triangular lattice inscribed withif}.d4(*:)| — 1)-dimensional simplex. Having
computedPr(c(®)|o{"")) for one node offl ., corresponding to configuratiaf®:), we can
compute the result for an adjacent nodéifl) time,

(@i) 1\ (ai)
Pr (céiﬁa,)b*ai)) = q* (/) (a) Pr (c(“i)|cr£ai)) . (5.21)
aial)(a) (cl@)(a’) +1)

Hqwy always has a Hamiltonian path (attributed to an unpublistesdlt of Knuth by
Klingsberg [1982]), so having comput®(c(@:) |o{*")) for an initial ¢(2*) using Equation (5.19),
the results for all other projected configurations (node&/in.,)) can be computed by using
Equation (5.21) at each subsequent step on the path. Gegetfa¢ Hamiltonian path corre-
sponds to finding a combinatorial Gray code for compositiansalgorithm with constant amor-
tized running time is given by Klingsberg [1982]. To provistlame intuition, it is easy to see that

30

a simple, “lawnmower” Hamiltonian path exists for any loveémensional projection ofl (),
with the only state required to compute the next node in thie Ipaing a direction value for each

dimension.
Our algorithm for computing the distributidpr c(‘“)|a£‘“)) is summarized in Algorithm

3. For computing expected utility, we again use Algorithnex;ept with Algorithm 3 replacing
Algorithm 1 as the subroutine for computing the distribatier (c(aﬂ |a£‘“)).

Algorithm 3 Computing distributiorPr (c(‘“)|g£ai)) in a symmetric AGG

1. letc(e) =) wherec(" is the initial node of a Hamiltonian path &f ..

2. computePr (c(‘“

cri‘“')) using Equation (5.18):

)) —1)!) (ag)

Pr C(al)|0£al) _ (n (Uiaz)(a))c i (a)
() HaGA(ai> (C(uq)(a))' ael.,}ai)

3. While there are more configurationsin®:):

(a) getthe next configurati Zj’la,) in the Hamiltonian path, using Klingsberg’s algo-
rithm [Klingsberg, 1982].

(b) computePr(E ,)|a* i) using Equation (5.21):

(@i) ¢ 1\ (ai)
Pr (Cgai) /)|0£ai)) __ ()% (o) Pr (C(ai)
Ugal)(a) (cled(a’) +1)

Uiai)))

(c) letel®) = cla)

(a—a’)"

4. outputPr (c(‘“)|a*‘“)) forall ¢(@:) ¢ C(ai),

Theorem 5.3 Computation of the expected uul\‘zg{ (o) under a symmetric strategy profile for
symmetric action- graph games using Equati@s), (5.18) (5.19)and (5.21)takes time that is
O(A| + [v(ay)| |Gl (ale))).

Proof. Projection too{*") takesO(|.A|) time since the strategies are symmetric. Equa-
tion (5.5) has|C(@)(c(2))| summands. The probability for the initial configuration re-
quires O(n) time. Using Gray codes the computation of subsequent pilitiesh can

be done in constant amortized time for each configuratiomceSieach look-up of the
utility function takesO(|v(a;)|) time, the total complexity of the algorithm ©(].A| +
v(ay)] ‘C(ai)(g(ai))‘)_]

Note that this is faster than our dynamic programming atgorifor general AGGs under ar-
bitrary strategies, whose complexity @&(n|A| + n|v(a;)|? |C(@) (c(@))|). In the usual case

where the second term dominates the first, the algorithmyfmnsetric strategies is faster by a
factor ofn|v(a;)|.

31

5.6 k-symmetric Games

We now move to a generalization of symmetric games that wekesymmetry.

Definition 5.4 An AGG isk-symmetric if there exists a partitiofiVy, ..., N} of N such that
foralll € {1,...,k}, foralli,j € Ni, A; = Aj.

Intuitively, k-symmetric AGGs represent games havinglasses of agents, where agents within
each class are identical. We note that all AGGs are trivielgymmetric. The ice cream game
of Example 2.5 is an example of a nontriviasymmetric AGG witht = 3 (regardless of).

Given ak-symmetric AGG with partition{ N1, ..., N}, a mixed strategy profile is k-
symmetric if for alll € {1,...,k}, forall i, € N;, 0; = o;. We are often interested in
computing expected utility undérsymmetric strategy profiles. For example in Section 6.22 w
will discuss algorithms that make use of such expectedytdbmputations to find-symmetric
Nash equilibria ink-symmetric games.

To compute expected utility undekasymmetric mixed strategy profile, we can use a hybrid
approach when computing the probability distribution oeenfigurations, shown in Algorithm
4,

Algorithm 4 Computing the probability distributioRr(c(*!)|(¢!)) in a k-symmetric AGG un-
der ak-symmetric mixed strategy profite(®:).

1. Partition the players according {dvi, ..., Ny}.

2. Foreach € {1,...,k}, computePr(c(“)|o'¢"), the probability distribution induced by

a](\‘,lli), the partial strategy profile of players i¥. Sinceaj(\‘,lli) is symmetric, this can be
computed efficiently using Algorithm 3 as discussed in $&ch.5.

3. Combine thé: probability distributions together using Algorithm 1, uéting in the distri-
butionPr(c(*)|g (@),

Observe that this algorithm combines our specialized Allgor 3 for handling symmetric
games from Section 5.5 with the idea of running Algorithm 1tloa joint mixed strategies of
subgroups of agents discussed at the end of Section 5.3.

5.7 Computing Expected Payoff with AGGFNs

Algorithm 1 cannot be directly applied to AGGFNs with arbity f7. First of all, projection of
strategies does not work directly, because a playdaying an actior; ¢ v(«) could still affect
¢(®) via function nodes. Furthermore, the general idea of usymguhic programming to build up
the probability distribution by adding one player at a tineesl not work because for an arbitrary
function nodep € v(«), each player would not be guaranteed to aftép) independently. We
could convert the AGGFN to an AGG without function nodes idesrto apply our algorithm,
but then we would not be able to translate the extra compsstwieAGGFNs over AGGS into
more efficient computation.

5.7.1 Contribution-Independent Function Nodes

Luckily, the situation is better when all function nodesdrgj to a restricted class.

32

Definition 5.5 A function node in an AGGFN iscontribution-independent (Cif
e v(p) C A, i.e., the neighbors gf are action nodes.

e There exists a commutative and associative operatoand for eacha € v(p) an in-
teger w,, such that given an action profile = (a1,...,a,), forall p € P, ¢(p) =
*ieN:aieu(p) Wa; -

e The running time of eachk operation is bounded by a polynomial iny |.A| and |P].
Furthermorex can be represented in space polynomiakin.A| and|P].

An AGGFN is contribution-independent if all its functiondes are contribution-independent.

Note that this definition entails thatp) can be written as a function of?) by collecting terms:
e(p) = F7(e7)) = *acup (K] wa).

Simple aggregators can be represented as contributi@pémtient function nodes, with the
+ operator serving ag, andw,, = 1 for all «. The Coffee Shop game is thus an example of
a contribution-independent AGGFN. For the parity game iarBgle 3.2 is instead addition
mod 2. An example of a non-additive CI function node arisea erfect-information model
of an (advertising) auction in which actions corresponditbamounts [Thompson & Leyton-
Brown, 2008]. Here we want(p) to represent the amount of the winning bid, and so wevlet
be the bid amount corresponding to actigrand* be themax operator.

The advantage of contribution-independent AGGFNSs is tbaeafl function node9, each
player’s strategy affects(p) independently. This fact allows us to adapt our algorithreftd
ciently compute the expected utiliwji (o_;). For simplicity we present the algorithm for the
case where we have one operatdior all p € P, but our approach can be directly applied to
games with different operators ang, associated with different function nodes.

We define thecontributionof actiona to nodem € A U P, denoted, (m), as 1 ifm = «,
0ifm e A\ {a}, and*mley(m)(*i‘:‘:({”/) wy) if m € P. Then it is easy to verify that given an
action profilea = (a1, ..., a,), c(a) = 377, dq; (@) forall a € Aandc(p) = *}_; 4,4, (p) for
allp e P.

Given that playet playeda;, and for alla € A, we define the projected contribution of

actiona undera;, denoted'"”), as the tupl€da (m))mev(a;)- Note that different actions
may have identical projected contributions under Playerj’'s mixed strategy; induces a
probability distribution ovey’s projected contribution®r (5% |o;) = Zaj.(;(ai):é(ai) aj(aj).
Now we can operate entirely using the probabilities on mteje contributions instead of the
mixed strategy probabilities. This is analogous to theqmtipn ofs; to a§‘“) in our algorithm
for AGGs without function nodes.

Algorithm 1 for computing the distributioRr(c(*)|o) can be straightforwardly adopted to

ai)

work with contribution-independent AGGFNs. Whenever wplgplayerk’s contributiond,,
to Cl(ctﬁ)l’ the resulting configuratioa;“i) is computed componentwise as follo ‘“)(m) =
559 (m) +) (m) if m € A, andc\™ (m) = 6529 (m) *) (m) if m € P.

To analyze the complexity of computing expected utilityisinecessary to know the rep-
resentation size of a contribution-independent AGGFN. éawrh function node we need to
specify* and (wa)aew(p) instead off? directly. Let|| * || denote the representation sizesof
Then the total size of a contribution-independent AGGFKVS" . . |C@)| + ||]|). As dis-
cussed in Section 3.3, this size is not necessarily polyabimin, |.A| and|P|; although when
the conditions in Corollary 3.5 are satisfied, the repregéont size is polynomial.

33

Theorem 5.6 If an AGGFN is contribution-independent, then expectelityutian be computed
in polynomial time in the size of the AGGFN. Furthermorehd in-degrees of the action nodes
are bounded by a constant, and the sizes of rarf@&g”)| for all p € P are bounded by a
polynomial inn, |.A| and|P|, then expected utility can be computed in time polynomial it
and|P]|.

Proof Sketch. Following similar complexity analysis as Theorem 5.2, if AGGFN is
contribution-independent, expected utility (o_;) can be computed i@(n|A||C@)|(T. +
|v(a;)])) time, whereT, denotes the maximum running time of aroperation. Sinc is
polynomialinn, |.A| and|P| by Definition 5.5, the running time for computing expecteitt ut
ity is polynomial in the size of the AGGFN representatione®econd part of the theorem
follows from a direct application of Corollary 3.1

For AGGFNs whose function nodes are all simple aggregatard) player’s set of projected
contributions has size at mdst(a;) + 1|, as opposed t04] in the general case. This leads to a
run time complexity ofO(n|A| + n|v(a;)|?|C@)|), which is better than the complexity of the
general case proved in Theorem 5.6. Applied to the Coffeg $lame, sincéC(®)| = O(n?)
and all function nodes are simple aggregators, our algartdkesO(n|A| + n*) time, which
growslinearlyin |.A|.

5.7.2 Beyond Contribution Independence

What if not all function nodes are contribution-indepen@efs there anything we can do be-
sides converting the AGGFN into its induced AGG without ftioie nodes? It turns out that by
reducing the problem of computing expected utility to a Bage network inference problem,
we can efficiently compute expected utilities for certaassles of non-contribution-independent
AGGFNSs.

Bayesian networks are used to compactly represent prayatigtributions by graphically
describing independencies between random variables€sgee Russell and Norvig [2003]). A
Bayesian network is a DAG in which nodes represent randoriablas and edges represent
direct probabilistic dependence between random variaBliesach nodeX a conditional proba-
bility distribution (CPD) is defined, which specifies the pability of each realization of random
variableX conditional on the realizations of neighboring randomalales. Efficient algorithms
have been developed to compute probabilities in Bayesitwmonks, such as clique tree propa-
gation and variable elimination.

A key step in our approach for computing expected utility B@FNs is computing the prob-
ability distribution over configurationBr(c(@)|o(#:)). If we treat each node:’s configuration
¢(m) as a random variable, then the distribution over configonatican be interpreted as the
joint probability distribution over the set of random vaulies{c(m) }eu(a,)-

Given an AGGFN, a playerand an actiom; € A;, we can construct aimduced Bayesian
networkB :

e The nodes of3; consist of:

— one node for each elementofa;);
— one node for each neighbor of a function node belonging &);

— one node for each neighbor of a function node added in theqaregtep, and so on
until no more function nodes are added.

34

Each of these nodes represents the random variablen). We further introduce another
kind of node:

— n nodessy, ..., o,, representing each player’s mixed strategy. The domaiadi e
random variabler; is A;.

e The edges Oszi are constructed by keeping all edges that go into the fumctomles that
are included i3, ignoring edges that go into action nodes. Furthermoredoh@layer;,
we create an edge fromy to each ofj’s actionsa; € A;.

e The conditional probability distribution (CPD) at each €tion nodep is just the determin-
istic function f?. The CPD at each action nodéis a deterministic function that returns
the number of its neighbors (observe that these are all ngttategy nodes) that take the
valuea’. Mixed strategy nodes have no incoming edges; their (uriionél) probabil-
ity distributions are the mixed strategies of the corresjpamplayers, except for player
whose noder; takes the deterministic valus.

It is straightforward to verify thanli is a DAG, and that the joint distribution on random vari-
ables{c(m)}me (o) is exactly the distribution over configuratio®s(c(®)|(a,, 0'%)). This

joint distribution can then be computed using a standardréfgn such as clique tree propaga-
tion or variable elimination. The running times of such altions are exponential in the worst
case; however, when the induced Bayesian networks havelbduree-width, the running times
are polynomial.

Further speedups are possible at nodes in the induced Bayestwork that correspond
to action nodes and contribution-independent functionesodrhe deterministic CPDs at such
nodes can be formulated using independent contributiam fach player’s strategy. This is
an example otausal independencsructure in Bayesian networks studied by Heckerman and
Breese [1996] and Zhang and Poole [1996], who proposedteéliftenethods for exploiting such
structure to speed up Bayesian network inference. Suchadgtthare the common underlying
idea of decomposing the CPDs into independent contribsiti@hich is intuitively similar to our
approach in Algorithm 1.

5.8 Computing Expected Payoff with AGGFNs with Additive Structure

Due to the linearity of expectation, the expected utilityi pfaying an actior; with an additive
utility function with coefficientS \,,) mev(a,) 1S

Viloi)= > AmElc(m)lai, o, (5.22)

mev(a;)

whereE[c(m)|a;, 0—;] is the expected value @fm) given the strategy profilés;, o—;). Thus
we can compute these expected values for each v(a;), then sum them up as in Equation
(5.22) to get the expected utility. h is an action node, theR[c(m)|a;, o—;] is the expected
number of players that chose, whichis},_ , oi(m). The more interesting case is wheris a
function node. Recall thaim) = ™ (c"™)) wherec(™) is the configuration over the neighbors
of m. We can write the expected valuedin) as

Ele(m)lai o= > (™) Pr(c"™]ai, o). (5.23)
c(m) e(m)

35

This has the same form as Equation (5.5) for the expectatyuti]. (7_;), except that we have
f™ instead ofu®. Thus our results for the computation of Equation (5.5) alsply here. That
is, if the neighbors ofn are action nodes and/or contribution-independent functimdes, then
E[c¢(m)|a;,o—;] can be computed in polynomial time.

Theorem 5.7 Suppose we are given an AGGFN in whichis represented as an additive utility
function. If each of the neighbors afis either

e an action node, or

e a function node whose neighbors are action nodes and/oritoibn-independent func-
tion nodes,

then the expected utilifiy’ (o_;) can be computed in time polynomial in the size of the represen
tation. Furthermore, if the in-degrees of the neighbors.@fre bounded by a constant, and the
sizes of rangefR(f?)| for all p € P are bounded by a polynomial im, |.4| and |P], then the
expected utility can be computed in time polynomialifA| and|P|.

It is straightforward to verify that our AGGFN representais of polymatrix games, con-
gestion games, player-specific congestion games and the gafExample 4.5 all satisfy the
conditions of Theorem 5.7.

6 Computing Equilibria with AGGs

In this section we consider some theoretical and practippli@ations of our expected utility
algorithm. In Section 6.1 we analyze the complexity of fimgdanNash equilibrium in an AGG
and show that it is PPAD-complete. In Section 6.2 we extem@gpected utility algorithm to the
computation of payoff Jacobians, which is a key step in shadgorithms for computing Nash
equilibria. In Section 6.3 we show that it can also speed asimplicial subdivision algorithm,
and in Section 6.4 we show that it can be used to find corretgedibria in polynomial time.

6.1 Complexity of Finding a Nash Equilibrium

A series of recent papers have shown that the complexity dfnigna Nash equilibrium in a
n-player normal-form game is PPAD-complete for> 2 [Chen & Deng, 2006; Goldberg &
Papadimitriou, 2006; Daskalakés al., 2006b]. Turning to compact representations, Daskalakis
et al. [2006a] showed that the complexity of computing expectddyuplays a vital role in the
complexity of finding a Nash equilibrium.

Definition 6.1 (Polynomial type [Daskalakiset al., 2006a]) A game representation hamly-
nomial typeif the number of agents and the sizes of the action sét$;| are bounded by a
polynomial in the size of the representation.

AGGs and AGGFNs have polynomial type, since the agentsbaciets are represented
explicitly.

Theorem 6.2 ([Daskalakiset al., 2006a]) If a game representation satisfies the following prop-
erties:

1. the representation has polynomial type, and

36

2. Expected utility can be computed using an arithmetictyioacuit with polynomial length,
with nodes evaluating to constant values or performing &oldj substraction, or multi-
plication on their inputs,

then the problem of finding a Nash equilibrium in this repreéaéon can be polynomially re-
duced to finding a Nash equilibrium in a two-player normalrficgame.

Since the problem of finding a Nash equilibrium in a two-plagermal-form game is PPAD-
complete, the theorem implies that if the above propertted,tthe problem of finding a Nash
equilibrium for a compact game representation is in PPAD.

Theorem 6.3 The complexity of finding a Nash equilibrium in an AGG is PR&iDAplete.

Remark. It may not be clear why this is interesting or encouragingwkleer, observe that this

claim implies that the problem of finding a Nash equilibriumain AGG can be reduced to the
problem of finding a Nash equilibrium in a two-player nornfi@am game with size polynomial

in the size of the AGG. This is in contrast to the normal formpresentation of the original

game, which can be exponentially larger than the AGG. Inrotloeds, if we instead try to solve

for a Nash equilibrium using the normal form representatibthe original game, we would

face a PPAD-complete problem with an input exponentialigeéathan the AGG representation.
Therefore the PPAD-membership part of this theorem is atipegiesult that underscores the
benefits of the AGG representation.

Proof sketch We first show that the problem belongs in PPAD, by constrgcércircuit
that computes expected utility and satisfies the secondittemaf Theorem 6.2. Recall
that our expected utility algorithm consists of Equatiordf5then Algorithm 1, and finally
Equation (5.5). Equations (5.4) and (5.5) can be straightadly translated into arithmetic
circuits using addition and multiplication nodes. Alghbrit 1 involves for loops that cannot
be directly translated to an arithmetic circuit, but we alssehat we can unroll the for loops
and still end up with a polynomial number of operations. Tésutting circuit resembles
a lattice withn levels; at thek-th level there are}C’,g‘“)| addition nodes. Each addition
node corresponds to a configuraticfﬁi) € C,(C“f'), and calculate®, [c,(;“)] using Equation

(5.7). Also there ar¢A,(€“i)| multiplication nodes for eacb,(fi), in order to carry out the
multiplications in Equation (5.7).

To show PPAD-hardness, we observe that an arbitrary gralgiaene can be encoded as
an AGG without loss of compactness (see Section 2.4. Thugrtdigdem of finding a Nash
equilibriumin a graphical game can be reduced to the probleinding a Nash equilibrium
in an AGG. Since finding a Nash equilibrium in a graphical gésienown to be PPAD-hard,
finding a Nash equilibrium in an AGG is PPAD-haml.

For AGGFNSs that satisfy the conditions for Theorem 5.6 ordrken 5.7, similar arguments
apply, and we can prove PPAD-completeness for those seslas AGGFNSs if we make the
reasonable assumption that the operatosed to define the ClI function nodes can be imple-
mented as an arithmetic circuit of polynomial length thaiséies the second condition of Theo-
rem6.2.

90bserve that the second condition in Theorem 6.2 impliesttieaexpected utility algorithm must take polynomial
time; however, some polynomial algorithms (e.g., thosertg on division) do not satisfy this condition.

37

6.2 Computing Nash Equilibria: The Govindan-Wilson Algorithm

Now we move from the theoretical to the practical. We show loawdynamic programming
algorithm can be used to speed up two existing algorithmedorputing Nash equilibrium, and
then one for computing correlated equilibria.

First we consider Govindan and Wilson's [2003] continuatimethod, a state-of-the-art
method for finding mixed-strategy Nash equilibria in myltayer games. This algorithm starts
by perturbing the payoffs to obtain a game with a known eluilim. It then follows a path that
is guaranteed to lead to one or more equilibria of the origumaperturbed game. To take each
step, we need to compute the payoff Jacobian under the ¢unieed strategy in order to get the
direction of the path; we then take a small step along the gadirepeat.

How is a game’s payoff Jacobian defined? The payoff Jacolmidana mixed strategy is a
(>, 144]) x (32, |Ail) matrix with entries defined as

aVaii (O-—i) _ i _
Bowlan) vV, (@) (6.1)
= u (a;,C(ai, ay,a)) Pr(alo). (6.2)
acA

Here whenever we use an overbar in our notation, it is shodtfiar the subscript-{i,:'}. For
examplea = a_¢; . The rows of the matrix are indexed byanda; while the columns are
indexed by:’ anda; . Given entryVVai;f;_,(E), we calla; its primary action nodeanda; its
secondary action node '

As an aside, we note that efficient computation of the payafbbian is important for more
than simply Govindan and Wilson’s continuation method. &le, the iterated polymatrix
approximation (IPA) method [Govindan & Wilson, 2004] has same computational problem
at its core. At each step the IPA method constructs a polyxngéme that is a linearization
of the current game with respect to the mixed strategy prdfie Lemke-Howson algorithm
is used to solve this game, and the result updates the mira@gy profile used in the next
iteration. Though theoretically it offers no convergenaaigntee, IPA is often much faster than
the continuation method. Also, it can be used to give theinoation method a quick start. The
payoff Jacobian may also be useful to multiagent reinfom@rtearning algorithms that perform
policy search.

6.2.1 Computing the Payoff Jacobian

Now we consider how the payoff Jacobian may be computed. tieoués.2) shows that the
VVlj;f;,, () element of the Jacobian can be interpreted as the expedigdaftagenti when

she takes actiom;, agent’ takes actiom;/, and all other agents use mixed strategies according to
7. So a straightforward—and quite effective—approach iss® eur expected utility algorithm

to compute each entry of the Jacobian.

However, the Jacobian matrix has certain extra structiaedtows us to achieve further
speedup. For example, observe that some entries of theidacate identical. If two entries
have same primary action node then they are expected payoffs on the same utility function
u®. In other words, they have the same value if their inducetdadity distributions over’(®)
are the same. We need to consider two cases:

1. The two entries come from the same row of the Jacobian, lsggmp’s actiona,. There
are two sub-cases to consider:

38

(a) The columns of the two entries belong to the same playeut different actions;
anda’;. If ag.‘“) 5‘“) i.e., a; anda’; both project to the same projected action
in a;'s projected action graptf, then VV;;{GJ_ = VV(;JQ,_. This implies that when

o , IR VA v
aj,a; & v(a;), VVg, = VVa;,a;.'

(b) The columns of the entries correspond to actions of idiffeplayers. We observe
that for allj anda; such thab(“i)(a§“i)) =1,VV}i, () =V} (0_;). As aspecial

ea(ay) . . o .
case, ifA;"" = {(Z)} ie., agenp does not affect’s payoff wheni playsa;, then for
all a; € Aj, VV;I,’?GJ_ (E) = Vazl (O'_i).

2. If a; anda; correspond to the same action nad¢but owned by agentsand; respec-
tively), thus sharing the same payoff functiof, thenVV;’/, = VV/J . Furthermore,

if there existu) € A;,a; € A; such that, ' = /) (or§'5*" = 61" for contribution-
independent AGGFNSs), theaV/ , = VV(-ijia,

A consequence of 1(a) above is that any Jacobian of an AGGthmesi) , Za ea,(n—
1)(v(a;) + 1) unique entries. For AGGs with bounded in-degree, thi3(is), | A;|). For each
set of identical entries, we only need to do the expectedyutibmputation once. One way to
implement this idea is to use a cache system that stores thimon value of each set of identical
entries.

Even when two entries in the Jacobian are not identical, weegaloit the similarity of the
projected strategy profiles (and thus the similarity of thauiced distributions) between entries,
and re-use intermediate results when computing the inddistidbutions of different entries.
Since computing the induced probability distributionshie bottleneck of our expected payoff
algorithm, this provides significant speedup.

First we observe that if we fix the ro(¥, a;) and the column'’s player, thens is the same for
all secondary actions; € A;. We can compute the probability distributi®(c,,—1|a;, & (@),
thenforalla; € AJ, Wejust need to apply the actiar to get the induced probability distribution
for the entryVV,"7,

Now suppose we fix the roW, ;). For two column playerg andj’, their corresponding
strategy profiles_g; ;, ando_y; -y are very similar, in fact they are identical in— 3 of the
n—2 components. For AGGs without function nodes, we can exgil@similarity by computing
the distributionPr(cn_l|o—(_";)), then for eachy # i, we “undo” j’s mixed strategy to get the
distribution induced by _; ;3. Recall from Section 5.4 that the distributions are coeffits of
the multiplication of certain polynomials. So we can undostrategy by computing the long
division of the polynomial for_; by the polynomial fow ;.

This method does not work for contribution-independent ABIS, because in general a
player’s contribution to the configurations are not re\desii.e., giverPr(cn_1|a£‘lii)) ando,
it is not always possible to undo the contributiong¢f Instead, we can efficiently compute the
distributions by recursively bisecting the set of playen®isubgroups, computing probability
distributions induced by the strategies of these subgraams$ combining them. For example,
supposer = 9 andi = 9, soo_; = o1..s. We need to compute the distributions induced by
O_{1,9},--+,0_{8,0}, respectively. Now we biseet ; into ;.. 4 andos_s. Suppose we have
computed the distributions induced by . 4 as well asos34, 0134, 0124, 0123, @nd similarly for

10For contribution-independent AGGFNSs, the condition beesﬁi‘;i) = 52‘?1'), i.e.,a; anda;. have the same pro-
i
jected contribution under;.

39

(ai)

—{1,9}
Pr(-|ol%), computePr(-|aﬁlE%_9}) by combiningPr(-|o%})) andPr(-|o %)), etc. We have re-
duced the problem into two smaller problems over the sulggdu. .4 and5 . .. 8, which can
then be solved recursively by further bisecting the subgsohis method saves the recompu-
tation of subgroups of strategies when computing the induitstributions for each row of the
Jacobian, and it works with any contribution-independe®BG¥xNs because it does not use long

division to undo strategies.

the other group ob...8. Then we can computer(:|o) by combiningPr(-|o—§§§3) and

6.2.2 Finding equilibria of symmetric and k-symmetric games

Nash proved [1951] that all finite symmetric games have atleae symmetric Nash equilib-
rium. The Govindan-Wilson algorithm can also be adaptedit $iymmetric Nash equilibria in
symmetric AGGs. In order to compute a symmetric equilibritine algorithm must be seeded
with a symmetric equilibrium of the perturbed game. Thisdsamplished by giving all agents
the same large bonus to some common action, so that in theeqaliibrium of the initial per-
turbed game all agents take the same action. Then the &ligofitllows a path of symmetric
equilibria of perturbed games to a symmetric equilibriuntref unperturbed game. Thus each
call to compute a payoff Jacobian would reference a symmstirategy profile, and so the ex-
pected utility computations can be performed using thertegles discussed in Section 5.5,
which are faster than our expected utility algorithm for gt AGGs. Techniques discussed in
the current section can further be used to speed up the catigpuof Jacobians in the symmetric
case. Furthermore, the symmetry of the game and the strptefjie ensures that the Jacobian
has at mosbd_ . ,(v(a) + 1) = O(|E|) identical entries, wher& is the set of edges of the
action graph.

A straightforward corollary of Nash’s [1951] proof is thatyak-symmetric AGG has at least
one k-symmetric Nash equilibrium. Relying on similar argumeasgsabove, we can adapt the
Govindan-Wilson algorithm to find-symmetric equilibria ink-symmetric AGGs. The bottle-
neck is the computation of payoff Jacobians undaslymmetric strategy profiles, which can be
efficiently performed using the techniques discussed ini&@e6.6.

6.3 Computing Nash Equilibria: The Simplicial Subdivision Algorithm

Another algorithm for computing Nash equilibria is van dexan, Talman & van der Heyden’s
[1987] simplicial subdivision algorithm, which is derivé@m Scarf’s [1967] algorithm for com-
puting fixed points. At a high level, the algorithm does thiofwing.

1. The space of mixed strategy profiles= [[, 3; is partitioned into a set of subsimplexes.

2. We assign labels to vertices of the subsimplexes, in a wely that a “completely labeled”
subsimplex corresponds to an approximate Nash equilibrium

3. The algorithm follows a path of “almost completely lataBlsubsimplexes, and eventually
reaches a “completely labeled” subsimplex.

4. Such an approximate equilibrium can be refined, by réstatthe algorithm near the ap-
proximate equilibrium, but using a finer grid.

The algorithm’s bottleneck step is computation of labelthefsubsimplexes along the path,
which in turn depends on computation of expected utilitinder mixed strategy profiles. By
using our AGG-based Algorithm 2 for computing expectedtytithis step can be sped up expo-
nentially compared to a normal-form-based implementation

40

6.4 Computing Correlated Equilibria: Papadimitriou’s Alg orithm

Papadimitriou [2005] proposed a very general, polynortiiaé algorithm for computing corre-
lated equilibria.

Theorem 6.4 ([Papadimitriou, 2005]) If a game representation has polynomial type, and has
a polynomial algorithm for computing expected utility, tha correlated equilibrium can be
computed in polynomial time.

The reader might wonder why this is interesting, since thera well-known linear pro-
gramming formulation for computing a correlated equiliton. The catch is that this LP has one
variable for each action profile. Thus, while it amounts t@lpomial-time algorithm for games
represented in normal form, its size is exponential in tae sif any compact representation for
which the simple algorithm for computing expected utilityen by Equation 5.1 is inadequate.
Indeed, in these cases ewd@scribinga correlated equilibrium using these probabilities of@tti
profiles can require exponential space. Papadimitriossltés thus much deeper than it may
first seem. Its proof begins by showing that every compaettyesented game has a correlated
equilibrium that can be written as the mixture of a polyndmiamber of product distributions.
Since the theorem requires that the game representatiopdiasomial type, this polynomial
mixture of product distributions can also be representdghmmnially.

The second condition in Papadimitriou’s theorem involVesdomputation of expected util-
ity, which is a bottleneck step in his algorithm. As a direatallary of Theorem 6.4 and our
Theorem 5.2 which states that there is indeed a polynongalridhm that computes expected
payoffs for AGGs, we have a polynomial algorithm for compgta correlated equilibrium given
an AGG.

Corollary 6.5 Given a game represented as an AGG, a correlated equilibcambe computed
in polynomial time.

Similarly, for the subclasses of AGGFNs for which the expdattility problem can be solved
in polynomial time (see Theorems 5.6 and 5.7), correlatedlibgja can be computed in poly-
nomial time.

7 Experiments

Although our theoretical results show that there are sicgnifi benefits to working with AGGs,
they might leave the reader with two worries. First, the ezadight be concerned that while
AGGs offer asymptotic computational benefits, they migimebow be less useful than they ap-
pear in practice. Second, even if convinced about the usesalof AGGs, the reader might want
to know the size of problems that can be tackled by the contiput tools we have developed
so far. We address both of these worries in this section, pgrteg on the results of extensive
computational experiments that we have performed with AGe software tools that we have
developed will make it easy for other researchers to use AG@mdel problems of interest.

In the rest of this section, we show the results of experisientmparing the performance
of the AGG representation and our AGG-based algorithmswagabrmal-form-based solutions
using the (highly optimized) GameTracer package [Blenal, 2002]. As benchmarks, we
used AGG and normal-form representations of instances #fe€&hop games, Job Market
games, and symmetric AGGs on random graphs. We compareétesentation sizes of AGG
and normal-form representations, and compared their peeoce resulting from using these

41

representations to compute expected utility, to computehNeguilibria using the Govindan-
Wilson algorithm, and to compute Nash equilibria using timepdicial subdivision algorithm.
Finally, in Section 7.7 we show how sample equilibria of thgames can be visualized on the
action graphs.

7.1 Software Implementation and Experimental Setup

We implemented our algorithms as a software package wiiitt€¥+. Our software is capable
of the following:

e reading in a description of an AGG;
e computing expected utility and Jacobian given mixed stpapofile;

e computing Nash equilibria by adapting GameTracer’s [Bktral., 2002] implementation
of Govindan and Wilson’s [2003] continuation method; and

e computing Nash equilibria by adapting GAMBIT'’s [McKelvey al,, 2006] implementa-
tion of the simplicial subdivision algorithm [van der Laahal., 1987].

We extended GAMUT [Nudelmaet al., 2004], a suite of game instance generators, by imple-
menting generators of instances of AGGs including Ice Cr&¥anmdor games (Example 2.5),
Coffee Shop games (Example 3.1), Job Market games (Exanidle &nd symmetric AGGs on
arandom action graph with random payoffs. Finally, with DemBargiacchi, we also developed
a graphical user interface for creating and editing AGGs$.ohbur software is freely available
for download aht t p: / / agg. cs. ubc. ca.

When using Coffee Shop games in our experiments, we setfsagoidomly in order to test
on a wide set of utility functions. For the visualization afudlibria in Section 7.7 we set the
Coffee Shop game utility functions to be

u®(c(a), c(pl,), c(pi)) = 20 — [e(@)]* — c(pl,) — log(c(pll) + 1),

wherep!, is the function node representing the number of players sihgoeadjacent locations
andp!. is the function node representing the number of playerssihgmther locations.
When using Job Market games in our experiments, we set tlity éiinctions to be

Rq

af (@)
) = O Sy 1oy 01

_Kou

with R,, setto2,4,6,8,10andK, settol, 2, 3, 4, 5 for the five levels from high school to PhD.
When using Ice Cream Vendor games for the visualization oiliegia in Section 7.7 we set
the utilities so that for a playerchoosing actiony, each vendor choosing a locatioh € v(«)
contributesw yw; utility to 7. wy is -1 whena’ has the same flavor as and 0.8 otherwisew; is
1 whena’ anda correspond to the same location, and 0.6 when they corregpdtifferent (but
neighboring) locations. In other words, there is a negatffect from players choosing the same
flavor, and a weaker positive effect from players choosingfarént flavor. Furthermore effects
from neighboring locations are weaker than effects fronstrae location.
All our experiments were performed using a computer clusiasisting of 55 machines with
dual Intel Xeon 3.2GHz CPUs, 2MB cache and 2GB RAM, runningeSuinux 10.1.

42

7.2 Representation Size

First, we compared the representation sizes of AGGFNs teetlod their induced normal form
representations. For each game instance we counted thesnoifayoff values that needed to
be stored in each representation.

We first looked at Coffee Shop games with< 5 blocks, with varying number of players.
Figure 13 (left) has a log-scale plot of the number of payafties in each representation versus
the number of players. The normal form representation grgymentially with respect to the
number of players, and quickly became impractical for langenber of players. The size of
the AGG representation grew polynomially with respechtoAs we can see from Figure 13
(right), even for a game instance with 80 players, the AGG&esentation stored only about 2
million numbers. In contrast, the normal form represeatatvould have had to stode2 x 10'1°
numbers.

We then fixed the number of players at 4 and varied the numbétoaks. For ease of
comparison we fixed the number of columns at 5 and only chatigeedumber of rows. Recall
from Section 3.1 that for both AGG and normal form repred@mta of Coffee Shop games, the
representation sizes depend only on the number of playdre@anber of actions, but not on the
shape of the region. (Recall that the number of actions edqoaB + 1 where B is the total
number of blocks.) Figure 13 (left) shows a log-scale plahefnumber of payoff values versus
the number of actions, and Figure 13 (right) gives a plot tist he AGGFN representation as
we increased the number of rows to 80. The size of the AGG septation grew linearly with
the number of rows, whereas the size of the normal form reptason grew like a higher-order
polynomial. This was consistent with our theoretical peéidn that AGGFNs stor@(|.A|n?)
payoff values for Coffee Shop games while normal form regméstions storen|.A|™ payoff
values. For a Coffee Shop game with 4 players os@wx 5 grid, the AGGFN representation
needs to store only about 8000 numbers, whereas the normatépresentation would have to
storel.0 x 10*! numbers.

We also tested on Job Market games from Example 2.11, whiah t&actions. We varied
the number of players from 3 to 24. The results are similashasvn in Figure 15 (left). This
is consistent with our theoretical prediction that the siaénormal form representations grow
exponentially inn while the sizes of AGG representations grow polynomiallyin

7.3 Expected Utility Computation

We tested the performance of our dynamic programming algarfor computing expected util-
ities in AGGFNs against GameTracer’s normal-form-basgdrdhm for computing expected
utilities. For each game instance, we generated 1000 rasthategy profiles with full support,
and measured the CPU (user) time spent computjfido_,,) under these strategy profiles.
Then we divided this measurement by 1000 to obtain the ageC&l) time.

We first looked at Coffee Shop games of different sizes. Walfilie size of blocks &t x 5
and varied the number of players. Figure 14 shows plots afgbgts. For very small games the
normal-form-based algorithm is faster due to its smalleskkeeping overhead; as the number
of players grows larger, our AGG-based algorithm’s runninge grows polynomially, while
the normal-form-based algorithm scales exponentially.rfore than five players, we were not
able to store the normal form representation in memory. Miéde, our AGG-based algorithm
has no trouble with large numbers of players, averaging deacond to compute an expected
utility for an 80-player Coffee Shop game.

Next, we fixed the number of players at 4 and the number of cotuat 5, and varied the
number of rows. Our algorithm’s running time grew roughhelarly with the number of rows,

43

100000000 10000000
10000000 —-—AGG 1000000 4
°
@ 1000000 —-NF S 100000
()
2 100000 - s
173 2 10000 -
© 10000 - o
S 1000 | 5 1000
> g 100 1
s 100 + o
10 4 101
1 — T T T T T 1
345678 910111213 141515 L m s s
6 14 22 30 38 46 54 62 70 78
number of players number of players
1000000000 9000
5 100000000 || ~—AGC ° 8000
o ——NF 7000
S 10000000 9 600
» 1000000 | 3 5000
%) & 4000
% 100000 - = a0
> 10000 Z 2000
©
(e} 1000 W O 1000 4
100 91 121 151 181 211 241 271 301 331 361 391

16 26 36 46 56 66 76

number of actions number of actions

Figure 13: Comparing Representation Sizes of the Coffep §ame. Top left5 x 5 grid with

3 to 16 players (log-scale). Top right: AGG onlyx 5 grid with up to 80 players (log-scale).
Bottom left: 4-playen- x 5 grid with » varying from 3 to 15 (log-scale). Bottom right: AGG
only, up to 80 rows.

while the normal-form-based algorithm grew like a higheder polynomial. This was consistent
with our theoretical prediction that our algorithm takeg:|.A| +n*) time for this class of games
while normal-form-based algorithms tak¥|.4|"~1) time.

We also considered strategy profiles having partial supdhile ensuring that each player’s
support included at least one action, we generated stratedijes with each action included in
the support with probability 0.4. GameTracer took about &d%s full-support running times
to compute expected utilities for the Coffee Shop game mt&a mentioned above, while our
algorithm required about 20% of its full-support runningés.

We also tested on Job Market games, varying the numbersysénslaThe results are shown
in Figure 15 (right). The normal-form-based implementations out of memory for more than 6
players, while the AGG-based implementation averagedtabquarter of a second to compute
expected utility in a 24-player Job Market game.

7.4 Computing Payoff Jacobians

We ran similar experiments to investigate the computatfquegoff Jacobians. As discussed in
Section 6.2, the entries of a Jacobian can be formulatedpected payoffs, so a Jacobian can
be computed by doing an expected payoff computation for ehitk entries. In Section 6.2 we

discussed methods that exploit the structure of the Jacdbifurther speed up the computation.
GameTracer’s normal-form-based implementation alsoagtgathe structure of the Jacobian by
reusing partial results of expected payoff computationkekcomparing our AGG-based Jaco-
bian algorithm as described in Section 6.2 to GameTracapséamentation, the results are very
similar to the above results for computing expected payaoffs implementation scales polyno-

44

1 1
0.1 4
0.01 -
0.001 4

0.0001 |
—=NF

0.00001 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0.0001
6 14 22 30 38 46 54 62 70 78

number of players number of players

CPU time in seconds
CPU time in seconds

[7)
» | e 0.0007
2 ——AGG G 0.0006
S 01| —ane & 0.0005
@ 7]
©» o0 c 0.0004
£ ; 0.0003
0.001
g £ 0.0002
S 0.0001 = o.0001
=) W o
8 0.00001 a 0
o~ (]
o1 121 151 181 211 241 271 301 331 361 391

16 26 36 46 56 66 76
number of actions number of actions

Figure 14: Running times for payoff computation in the Ceffthop game. Top lefG x 5 grid
with 3to 16 players. Top right: AGG onl$,x 5 grid with up to 80 players. Bottom left: 4-player
r x 5 grid with r varying from 3 to 15. Bottom right: AGG only, up to 80 rows.

100000000 1

10000000

01
1000000

100000 001

10000

payoffs stored

1000 0.001

100
—AGG 00001
10 ——NF —==NF
1 000001

3456 7 8 9101112131415161718192021222324 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24
number of players

CPU time in seconds

number of players

Figure 15: Results for Job Market games with varying numbérglayers. Left: comparing
representation sizes. Right: running times for computi®@Qlexpected utilities.

mially in n while GameTracer scales exponentially:inWe instead focus on the question of how
much speedup the methods in Section 6.2 provide, by congatinalgorithm in Section 6.2
against the algorithm that computes expected payoffsgusin AGG-based algorithm described
in Section 5) for each of the Jacobian’s entries. We testedaifee Shop games onsax 5 grid
with 3 to 10 players, as well as Coffee Shop games with 4 p&ayecolumns and varying num-
bers of rows. For each instance of the game we randomly gtelet@0 strategy profiles with
partial support. For each of these game instances, ouritdgoas described in Section 6.2 was
consistently about 50 times faster than computing expguagoffs for each of the Jacobian’s
entries. This confirms that the methods discussed in Se6tibprovide significant speedup for
computing payoff Jacobians.

45

7.5 Finding Nash Equilibria using the Govindan-Wilson algaithm

Now we show experimentally that the speedup we achieveddimpeiting Jacobians using the
AGG representation leads to a speedup in the Govindan-kvdigorithm. We compared two
versions of the Govindan-Wilson algorithm: one is the impdatation in GameTracer, where
the Jacobian computation is based on the normal-form reptason; the other is identical to
the GameTracer implementation, except that the Jacobiart®enputed using our algorithm for
the AGG representation. Both techniques compute the Jacsleixactly. As a result, given an
initial perturbation to the original game, these two impéattations follow the same path and
return exactly the same Nash equilibrium. Any differencéni@two algorithms’ running times
is therefore due to their different methods of computingbéms.

Again, we tested the two algorithms on Coffee Shop gamesmyingsizes: first we fixed
the size of blocks at x 4 and varied the number of players; then we fixed the numbelayigps
at 4 and number of columns at 4 and varied the number of rowse#&ch game instance, we
randomly generated 10 initial perturbation vectors, ancefch initial perturbation we run the
two versions of the Govindan-Wilson algorithm. Since thening time of the Govindan-Wilson
algorithm highly depends on the initial perturbation, fack game instance the running times
with different initial perturbations had large variancestead, for each initial perturbation we
looked at theratio of running times between the normal-form implementatiod #dre AGG
implementation. Thus a ratio greater than 1 means the AGGeimgntation spent less time
than the normal form implementation. We plotted the resultBigure 16 (left). The results
confirmed our theoretical prediction that as the size of drags grows (either in the number of
players or in the number of actions), the speedup of the AG@amentation compared to the
normal-form implementation increases. The normal-formlementation runs out of memory
for game instances with more than 5 players, preventingara feporting ratios above = 5.
Thus, we ran the AGG-based implementation alone on gamanioss with larger numbers of
players, giving the algorithm a one day cutoff time. As shdwrthe log-scale boxplot of CPU
times in Figure 16 (top-right), for game instances with up2@layers, the algorithm terminated
within one day for most of the initial perturbations. A nodrf@am representation of such a game
would have needed to stoTe) x 10'° numbers. Figure 16 (bottom-right) shows a boxplot of the
CPU times for the AGG-based implementation, as we vary thelau of actions while fixing
the number of players at 4. For game instances with up to 48recfa4 x 12 grid plus one
action for not entering the market), the algorithm termaawithin an hour.

We also tested on Job Market games with varying numbers gépaThe results are shown
in Figure 17. For the game instance with 6 players, the AG&tamplementation is about
100 times faster than the normal-form-based implememtatid/hile the normal-form-based
implementation runs out of memory for Job Market games withierthan 6 players, the AGG-
based implementation was able to solve the game with 16 gay&®4 minutes on average. A
normal form representation of such a game would have needgdrel.1 x 10? utility values.

7.6 Finding Nash Equilibria using Simplicial Subdivision

As discussed in Section 6.3, we can speed up the normaldased simplicial subdivision al-
gorithm by replacing the subroutine that computes expadibty by our AGG-based algorithm.
We have done so to GAMBIT’s implementation of simplicial dislision. As with the Govindan-
Wilson algorithm, given a starting point both the originarsion of simplicial subdivision and
our AGG version follow a deterministic path to determineakathe same equilibrium. Thus,
all performance differences are due to the choice of reptaten.

We ran experiments that compared the performance of AG@ebsisnplicial subdivision

46

30 T 100000f e e e
& 25 =_— !
£ + % 10000
= " g
8 20 § H T D n
_<é o 1000 E D Q

= -
st y E T H T T
L £ 1 L
5 = 100 1
Z 10 3
o g ﬁ -
= L
g s 10E| ;
1
o —_— — P
3 4 5 3 4 5 6 7 8 9 10 11 12
number of players number of players
10000
T T

o7 é B _ + ' T
(] 1
5 T 1 « 1000 ! - E
= 6 ﬁ T T4 - $
8 O F 8 z ! O s
@5 m R § 100f T - il L
kel
24 & < =i n
w £ +
zs S s Y s
o O ! L
92 2 R Lo
g :

i1 e '

L
0.1
13 17 21 25 29 33 37 41 45 49 13 17 21 25 29 33 37 41 45 49
number of actions number of actions

Figure 16: Govindan-Wilson algorithms in the Coffee Shomga Top row:4 x 4 grid with
varying number of players. Bottom row: 4-playex 4 grid with » varying from 3 to 12. For
each row, the left figure shows ratio of running times; thatfggure shows logscale plot of CPU
times for the AGG-based implementation (the black horiablirie indicates the one-day cutoff
time).

against normal-form-based simplicial subdivision onanses of Coffee Shop games as well
as instances of randomly-generated symmetric AGGs on smoaltl graphs. For each game
instance, we ran both implementations with the startingewhigtrategy profile in which each

player gives equal probability to each of her actions.

We first tested on instances of Coffee Shop games with 4 roasludnns and varying num-
bers of players. For each game size we generated 10 instaithemndom payoffs. Figure 18
(left) has a boxplot of the ratio of running times betweenttlie implementations. The AGG-
based implementation is about 3 times faster for the 3-plagéances and about 30 times faster
in the 4-player instances. We also tested on Coffee Shop gauiitie 3 players, 3 columns and
varying numbers of rows from 4 to 7. For each game size we g#aed 0 instances with ran-
dom payoffs. Figure 18 (right) has a boxplot of the ratio afiming times. As expected, the
AGG-based implementation is faster and the gap in perfoceaandens as the games become
larger.

We then tested on symmetric AGGs on randomly generated Svioaldl graphs with random
payoffs. The Small World graphs were generated using GAMUMplementation with param-
etersKk = 1 andp = 0.5. For each game size we generated 10 instances. We first figed th
number of action nodes at 5 and varied the number of playezsuli are shown in Figure 19
(top row). While the actual running times on different imstas show large variance, the ratios
of running times between normal-form-based and AGG-basgitimentations show a clear in-

47

ratio of NF and AGG times
L~

N Iy (2] o] o N e

(=) (=) (=) (=) (=) (=] (=}

(=]

—_—

3

4 5
number of players

CPU time in seconds

10000

1000

100

10

[

0.1

3456 7 8 910111213141516
number of players

Figure 17: Govindan-Wilson algorithms on Job Market gamigls varying numbers of players.
Left: ratios of running times. Right: logscale plot of CPthés for the AGG-based implemen-
tation.

1% %]
(] (]
£25 E 45
U] U] -
Q Q !
220 < 4 '
2 2 -
55 s 35 T
z c4 = °
B 10 k)
o o
3 g 25F —
5 E3
== 2 —
13 16 19 22

number of players number of actions

Figure 18: Ratios of running times of simplicial subdivisialgorithms on Coffee Shop games.
Left: 4 x 4 grid with 3 to 4 players. Right: 3-playerx 3 grid with » varying from 4 to 7.

creasing trend as the number of players increases. The ktsmabased implementation ran
out of memory for instances with greater than 5 players. Masle, we ran the AGG-based im-
plementation on larger instances with a one-day cutoff tikeshown by the log-scale boxplot
of CPU times, the AGG-based implementation was able to sotwajority of instances with up
to 8 players within one day for each instance.

We then fixed the number of players at 4 and varied the numbstain nodes from 4 to 16.
Results are shown in Figure 19 (bottom row). Again, whiledbtial running times on different
instances show large variance, the ratios of running tirhes/s clear increasing trend as the
number of actions increases. The AGG-based implementataenable to solve a 16-action
instance in about 3 minutes on average, while the normat-ioased implementation took about
2 hours on average.

7.7 Visualizing Equilibria on the Action Graph

Besides facilitating representation and computationatition graph can also be used to visualize
strategy profiles in a natural way. A strategy profile of iat#r(such as a Nash equilibrium of

the game) can be visualized on the action graph by displahi@@xpected numbers of players
that choose each of the actions under the strategy prafid/e call such a tuple thexpected

48

é7 -_ 200000 -+ vovsss st
L
— 1
26 P 10000 -
£ S 1000 I
35 -] T
1
34 : £ 100 P
< '] * 1 ! '
o — £ 10t + ! ! 1
g3 F ! ! . |
D <
Z, = & 1 .
: =
o 0.1
gl ==
3 4 5 3 4 5 6 7 8
number of players number of players
$ 40 B +
2 10000 -
£ g : P
2 Tt 4 1000 HEE . VoL
£ %0 i - MR R | EEE AP
2 =i g o] p
® T @ 100}, . 'y
2 20 = = P '
L
g %' £ 10fr '
) (=] '5] ! N
LL (= o 1 1 1 i
z10 L] O Tt
k] & = 1
-% P o1l T

4 5 6 7 8 9 101112 13 14 1516
number of actions

IN
o
[}

7 8 9 10111213141516
number of actions

Figure 19: Simplicial subdivision algorithms on symme#i@Gs on Small World Graphs. Top
row: 5 actions, varying numbers of players. Bottom row: 4/pta, varying numbers of actions.
For each row, the left figure shows ratio of running times;right figure shows logscale plot of
CPU times for the AGG-based implementation (the black loatial line indicates the one-day
cutoff time).

configurationundero. This can be easily computed given for each action node, just add
up the probabilities of playingy, i.e. Elc(a)] = > ,cy oi(a) whereo;(a) is 0 whena ¢
A;. When the strategy profile consists of pure strategies,abeltris exactly the corresponding
configuration.

The expected configuration often has natural interpratatid-or example in Coffee Shop
games and other scenarios where actions correspond tdolocdtoices, an expected config-
uration can be seen as a density map of players under thegstrptofile. To illustrate, we
generated a 16-player Coffee Shop game ¢xd grid. We ran the Govindan-Wilson algorithm
with AGG-based implementation for the Jacobian computatidiich found a Nash equilibrium
in 77 seconds of CPU time. The expected configuration of thee(strategy) equilibrium is
visualized in Figure 20.

We also tested on a Job Market game with 20 players. A normal fepresentation of this
game would have needed to st@ré x 10'3* numbers. We ran the Govindan-Wilson algorithm
with AGG-based implementation for the Jacobian computatidiich found a Nash equilibrium
in 860 seconds of CPU time. The expected configuration of thelibrium is visualized in
Figure 21 (left). Note that the equilibrium expected confedion on some of the nodes are non-
integer values, as a result of mixed strategies by some glidlyers. We also isolated two mixed
equilibrium strategies and show how they can be visualiadeigure 21 (right).

We also tested on a Ice Cream Vendor game (Example 2.5) witicatibns, 6 chocolate

49

Figure 20: Visualization of a Nash equilibrium of a 16-plagoffee Shop game on4x 4
grid. The function nodes and the edges of the action graphatrghown. The action node at the
bottom corresponds to not entering the market.

vendors, 6 vanilla vendors, and 4 west-side vendors. Then@am-Wilson algorithm found
one equilibrium in 9 seconds of CPU time. The expected cordignn of the (pure strategy)
equilibrium is visualized in Figure 22. Observe that the sde is relatively denser, due to
the presence of the west-side vendors. Furthermore, thédos at the east and west ends are
chosen relatively more often than the middle locationsec#ifig the fact that the ends have
relatively fewer neighbors and thus less competition.

8 Conclusions

We proposed action-graph games (AGGSs) as a fully-expreggwme representation that can
compactly express utility functions with structure suchcastext-specific independence and
anonymity. We also extended the basic AGG representatiantiyducing function nodes and
additive utility functions, allowing us to compactly regent a wider range of structured utility
functions. We showed that AGGs can efficiently representymmeviously-studied compact
game classes including graphical games, symmetric gamesymous games and congestion
games.

We presented a polynomial-time algorithm for computingestpd utilities in AGGs and
contribution-independent AGGFNSs. For symmetric arslymmetric AGGs, we gave more effi-
cient, specialized algorithms for computing expectedtigs under symmetric ankksymmetric
strategy profiles respectively. We also showed how to usetalkgorithms to achieve exponential
speedups of existing methods for computing sample Nash@melated equilibria. We showed
experimentally that using AGGs allows us to model and amatiramatically larger games than
can be addressed with the normal-form representation.

50

SO=0= =
!

1.90447 ——2=

!
9-0--0-

(0

Figure 21: Visualization of a Nash equilibrium of a Job Margame with 20 players. Left:
expected configuration of the equilibrium. Right: two mixaglilibrium strategies.

We briefly mention a few of our current and future researckdlions. We are currently
exploring applications of AGGs for modeling and analyziaggke real-world multi-agent sys-
tems, and have preliminary results for network routing peots [Thompsoret al., 2007] and
complete-information advertising auction problems [Tip@on & Leyton-Brown, 2008]. An-
other interesting problem is the computation of pure-stnatNash equilibria in AGGs. While
the problem is NP-complete in general, in [Jiang & LeytormBn, 2007] we presented a poly-
nomial time algorithm for the class of symmetric AGGs whoséom graphs have bounded
in-degree and bounded tree-width. We are currently exterttiis algorithm to classes of asym-
metric AGGs. We are also working on extending our AGG frantwio represent games of
incomplete information (Bayesian games) as well as dyngauices.

References

Ben-Sasson, E., Kalai, A., & Kalai, E. (2006). An approaclbéoinded rationalityNIPS: Proceedings of
the Neural Information Processing Systems Confer¢ppel45-152).

Bhat, N., & Leyton-Brown, K. (2004). Computing Nash equilbof action-graph gamedJAI: Proceed-
ings of the Conference on Uncertainty in Atrtificial Intefligce(pp. 35-42).

51

Figure 22: Visualization of a Nash equilibrium of an Ice Gredendor game.

Blum, B., Shelton, C., & Koller, D. (2002). Gametracdrt t p: / / dags. st anf or d. edu/ Ganes/
ganetracer. htnl .

Blum, B., Shelton, C., & Koller, D. (2006). A continuation thed for Nash equilibria in structured games.
JAIR: Journal of Artificial Intelligence Researchs, 457-502.

Chen, X., & Deng, X. (2006). Settling the complexity of 2y Nash-equilibrium FOCS: Proceedings
of the Annual IEEE Symposium on Foundations of Computen&e{pp. 261-272).

Daskalakis, C., Fabrikant, A., & Papadimitriou, C. (2006ahe game world is flat: The complexity of
Nash equilibria in succinct gamefCALP: Proceedings of the International Colloquium on Auttda,
Languages and Programmir{gp. 513-524).

Daskalakis, C., Goldberg, P. W., & Papadimitriou, C. H. @30 The complexity of computing a Nash
equilibrium. STOC: Proceedings of the Annual ACM Symposium on Theoryrap@ing(pp. 71-78).

Daskalakis, C., & Papadimitriou, C. (2006). Computing pNesh equilibria via Markov random fields.
EC: Proceedings of the ACM Conference on Electronic Comer{prz. 91-99).

Daskalakis, C., & Papadimitriou, C. (2007). Computing &ftia in anonymous game$:OCS: Proceed-
ings of the Annual IEEE Symposium on Foundations of Com3diencepp. 83-93).

Daskalakis, C., Schoenebeck, G., Valiant, G., & Valian2B08). On the complexity of Nash equilibria of
Action-Graph Gamessubmitted

Elkind, E., Goldberg, L., & Goldberg, P. (2006). Nash eduik in graphical games on trees revisitéL:
Proceedings of the ACM Conference on Electronic Commé@-109.

Elkind, E., Goldberg, L., & Goldberg, P. (2007). Computirapg Nash equilibria in graphical gamdsC:
Proceedings of the ACM Conference on Electronic Commég2-171.

Fredkin, E. (1962). Trie memorfCommunications of the ACN3, 490-499.

Goldberg, P. W., & Papadimitriou, C. H. (2006). Reduciliftmong equilibrium problemsSTOC: Pro-
ceedings of the Annual ACM Symposium on Theory of Comp{im@1-70).

Govindan, S., & Wilson, R. (2003). A global Newton method tampute Nash equilibria.Journal of
Economic Theoryl10, 65—-86.

Govindan, S., & Wilson, R. (2004). Computing Nash equilbbiy iterated polymatrix approximation.
Journal of Economic Dynamics and ContraB, 1229-1241.

Heckerman, D., & Breese, J. S. (1996). Causal independangerdbability assessment and inference
using Bayesian network$EEE Transactions on Systems, Man and Cyberne2ig$), 826—831.

Hotelling, H. (1929). Stability in competitiorEconomic Journal39, 41-57.

leong, S., McGrew, R., Nudelman, E., Shoham, Y., & Sun, Q0%20Fast and compact: A simple class of
congestion game#AAI: Proceedings of the AAAI Conference on Artificial Iigeince 489-494.

Jiang, A. X., & Leyton-Brown, K. (2006). A polynomial-timdgorithm for Action-Graph GamesAAAL:
Proceedings of the AAAI Conference on Atrtificial Intellige(pp. 679-684).

52

Jiang, A. X., & Leyton-Brown, K. (2007). Computing pure Nasuilibria in symmetric Action-Graph
Games. AAAI: Proceedings of the AAAI Conference on Artificial Ihgeince(pp. 79-85).

Kalai, E. (2004). Large robust gamesconometrica72(6), 1631-1665.

Kalai, E. (2005). Partially-specified large gamea/INE: Proceedings of the Workshop on Internet and
Network Economic§op. 3—13).

Kearns, M. (2007). Graphical games. In N. Nisan, T. Rougthgray E. Tardos and V. Vazirani (Eds.),
Algorithmic game theorychapter 7, 159—-180. Cambridge, UK: Cambridge Universigsg.

Kearns, M., Littman, M., & Singh, S. (2001). Graphical madfdr game theoryUAI: Proceedings of the
Conference on Uncertainty in Atrtificial Intelligen€pep. 253-260).

Kearns, M., & Suri, S. (2006). Networks Preserving Evolnéiny Stability and the Power of Randomiza-
tion. EC: Proceedings of the ACM Conference on Electronic Comen2@0—-207.

Klingsberg, P. (1982). A Gray code for compositiodsurnal of Algorithms3, 41-44.

Koller, D., & Milch, B. (2003). Multi-agent influence diagmes for representing and solving gam&ames
and Economic Behavipd5(1), 181-221.

LaMura, P. (2000). Game networkdJAI: Proceedings of the Conference on Uncertainty in Aiiific
Intelligence(pp. 335-342).

Leyton-Brown, K., & Tennenholtz, M. (2003). Local-effea@mes.|JCAI: Proceedings of the International
Joint Conference on Artificial Intelligendpp. 772—780).

McKelvey, R. D., McLennan, A. M., & Turocy, T. L. (2006). GaiitbSoftware tools for game theory.
http://econweb. t anu. edu/ ganbi t.

Milchtaich, 1. (1996). Congestion games with player-sfieghayoff functions. Games and Economic
Behavior 13, 111-124.

Monderer, D. (2007). Multipotential gameklCAI: Proceedings of the International Joint Conference o
Artificial Intelligence(pp. 1422-1427).

Monderer, D., & Shapley, L. (1996). Potential gamé&ames and Economic Behavidd, 124-143.
Nash, J. F. (1951). Non-cooperative gamese Annals of Mathematic54(2), 286—295.

Nudelman, E., Wortman, J., Shoham, Y., & Leyton-Brown, KOG2). Run the GAMUT: A comprehen-
sive approach to evaluating game-theoretic algorithAaSMAS: Proceedings of the International Joint
Conference on Autonomous Agents and Multiagent Sygmm880-887).

Papadimitriou, C. (2005). Computing correlated equidiin multiplayer gamesSTOC: Proceedings of
the Annual ACM Symposium on Theory of Compufppy 49-56).

Papadimitriou, C. H., & Roughgarden, T. (2005). Computiggikbria in multi-player games.SODA:
Proceedings of the ACM-SIAM Symposium on Discrete Algog{pp. 82-91).

Porter, R., Nudelman, E., & Shoham, Y. (2008). Simple seanethods for finding a nash equilibrium.
Games and Economic Behavi63(2), 642—662.

Rosenthal, R. (1973). A class of games possessing putegtrilash equilibrialnternational Journal of
Game Theory2, 65-67.

Roughgarden, T., & Tardog, (2002). How bad is selfish routingldurnal of the ACM49(2), 236—259.

Russell, S., & Norvig, P. (2003Artificial intelligence: A modern approach, 2nd editidanglewood Cliffs,
NJ: Prentice Hall.

Scarf, H. (1967). The approximation of fixed points of a contius mapping.SIAM Journal of Applied
Mathematics15, 1328—-1343.

Thompson, D. R., Jiang, A. X., & Leyton-Brown, K. (2007). Gatieoretic analysis of network quality-
of-service pricing. BC.NET Conference

53

Thompson, D. R., & Leyton-Brown, K. (2008). Tractable congtional methods for finding Nash equi-
libria of perfect-information position auctionsiorkshop on Ad Auctions at the ACM Conference on
Electronic Commerce

van der Laan, G., Talman, A., & van der Heyden, L. (1987). Sicigl variable dimension algorithms for
solving the nonlinear complementarity problem on a proadicinit simplices using a general labelling.
Mathematics of Operations Researt(3), 377-397.

Vickrey, D., & Koller, D. (2002). Multi-agent algorithms fsolving graphical game#AAl: Proceedings
of the AAAI Conference on Artificial Intelligenep. 345-351).

Zhang, N., & Poole, D. (1996). Exploiting causal indepertdeimn Bayesian network inferencelAIR:
Journal of Atrtificial Intelligence Research, 301-328.

54

