
Algorithmic
h i d imechanism design

Vincent Conitzer
conitzer@cs.duke.edu

Algorithmic mechanism design
M h i h ld b i d b ffi i t• Mechanisms should be accompanied by an efficient
algorithm for computing the outcome

• May not be easy• May not be easy
– E.g., using the Clarke (VCG) mechanism in combinatorial

auctions requires solving the winner determination problem
ti lloptimally

• If the mechanism’s outcomes are too hard to
compute we may need a different mechanismcompute, we may need a different mechanism

• Algorithmic mechanism design [Nisan & Ronen STOC 99] =
simultaneous design of mechanism and algorithm for
computing its outcomes
– Given a mechanism, is there an efficient algorithm for

computing its outcomes?computing its outcomes?
– Given an algorithm for choosing outcomes, can we make it

incentive compatible (e.g., using payments)?

Combinatorial auctions: mechanisms that solve
the winner determination problem approximately

• Running Clarke mechanism using approximation
algorithms for WDP is generally not strategy-proof
Assume bidders are single minded (only want a single• Assume bidders are single-minded (only want a single
bundle)

• A greedy strategy-proof mechanism [Lehmann, O’Callaghan,
Shoham JACM 03]:

1. Sort bids by
(value/bundle

{a}, 11
{b c} 20

3. Winning bid
pays bundle size1*(18/2) = 9(

size)
{b, c}, 20
{a, d}, 18
{a, c}, 16

{ } 7

2. Accept
greedily starting

from top

times
(value/bundle size)
of first bid forced

out by the winning

2*(7/1) = 14

{c}, 7
{d}, 6

from top out by the winning
bid

Worst-case Can get a better approximation

0

approximation
ratio = (#items)

g pp
ratio, √(#items),

by sorting by value/√(bundle
size)

Clarke-type payments with same approximation
l ith d t kalgorithm do not work

{a}, 11
{b, c}, 20
{a, d}, 18
{a, c}, 16

{b, c}, 20
{a, d}, 18
{a c} 16{a, c}, 16

{c}, 7
{d}, 6

{a, c}, 16
{c}, 7
{d}, 6

Total value to
bidders other
than the {a}
bidd 26

Total value: 38

} bidd h ldbidder: 26 {a} bidder should
pay 38 - 26 = 12,
more than her

l i !valuation!

A shortest path/combinatorial reverse
auction problem [Nisan & Ronen STOC 99]auction problem [Nisan & Ronen STOC 99]

4
2

3

3
5

3

0

x
y

• Someone wants to buy edges that constitute a path from x to y
• Each edge e has a separate owner and that owner submits

5

Each edge e has a separate owner, and that owner submits
(bids) a cost ce for it

• Goal:
b th h t t th (th ith i i t t l i ht)– buy the shortest path (= path with minimum total weight),

– pay every edge according to Clarke mechanism
• no incentive to misreport costs

Th i d h h h i id• That is, an edge e on the shortest path is paid
(cost of shortest path without e) - (cost of shortest path with e) + ce

Computing Clarke payments
2

4

3

3

x
y

• One strategy:

3
5

0

One strategy:
– Compute shortest path (e.g., using Dijkstra’s algorithm)
– For each edge on the shortest path, remove that edge, solve

the problem again
• O(nm + n2 log n) total time 2

34

3
5

0

x
y

5

• Is there a more efficient algorithm?

Hershberger-Suri [FOCS 01] algorithm
• Compute the shortest path trees from x and from yCompute the shortest path trees from x and from y

– using Dijkstra
– gives us the shortest path from any vertex to x and to y

4 4 324

3

0

x
y

4

3

3

0

x
y

2

3 0

• Remove the edge e whose payment we wish to compute from
the first (x) tree

5
0

Uthe first (x) tree
– Cuts the graph into U and V 4

x y

U
V2

O () ()

3 0

y

• Over all edges (u, v) across components (excluding e),
minimize d(x, u) + c(u, v) + d(v, y)
– Using data structures, can be done for all edges in O(n log n + m)

A make-span/reverse auction problem
[Nisan & Ronen STOC 99][]

• There are m jobs that need to be scheduled on (say) 2
machines
E h hi i d b t t• Each machine is owned by a separate agent

• cij is the time that machine i would take on job j
also the cost that machine i has for doing j– also the cost that machine i has for doing j

– private information
• The objective is to minimize the make-spanThe objective is to minimize the make span

– = highest total cost for an agent, = completion time of last job
• One possibility: just use Clarke mechanism

– Award job j to the machine that can do it faster (minimize
total work),

– Pay that machine the cost of the other machine for j– Pay that machine the cost of the other machine for j
• Gives a 2-approximation to the make-span

– Theorem: No deterministic mechanism does better

A bad instance for the Clarke mechanism

• Two jobs
• Machine 1: c = 1 c = 1• Machine 1: c11 = 1, c12 = 1
• Machine 2: c21 = 1+ε, c22 = 1+ε

• Clarke mechanism will give both jobs to 1
• Make-span: 2Make span: 2
• Can get 1+ε by giving one job to each (ignoring mechanism

design considerations)

Weighted Groves mechanisms
• Recall a Groves mechanism

chooses an allocation o that maximizes the sum of reported– chooses an allocation o that maximizes the sum of reported
utilities,

– pays agent i: Σj≠i uj(θj’, o) + h(θ-i’) for some function h
• A weighted Groves mechanism

– has a weight wi for each agent,
chooses an allocation o that maximizes Σw u (θ ’ o)– chooses an allocation o that maximizes Σwiui(θi , o),

– pays agent i: (1/wi)Σj≠i wjuj(θj’, o) + h(θ-i’) for some function h
• Weighted Groves mechanisms are strategy-proofWeighted Groves mechanisms are strategy proof

[Roberts 1979]

A biased mechanism based on a
i ht d G h iweighted Groves mechanism

[Nisan & Ronen STOC 99]
• For each job j, bias the mechanism towards accepting

one of the two agents ig
– For some b > 1, award job j to i if and only if cij < bc(-i)j
– If so, i gets payment bc(-i)j

Oth i i t t /b– Otherwise, -i gets payment cij/b
• Weighted Groves mechanism, so strategy-proof
• A randomized mechanism:• A randomized mechanism:

– set b = 4/3,
– for each job independently, randomly choose the agent to j p y y g

which the mechanism is biased
• Gives a 7/4 approximation

Characterizing allocation rules that can
be made incentive compatiblebe made incentive compatible

• We saw that we may be interested in choosing
allocations that do not maximize social welfare (sum
of utilities)

Different objectives (e g make span)– Different objectives (e.g., make-span)
– Social welfare maximizing allocation may be

computationally too hard to find
• Some (not all) allocation rules can be made incentive

compatible with the right payment rule
Wh t d ffi i t diti• What are necessary and sufficient conditions on an
allocation rule for this to be possible?

Weak monotonicity
[Bikhchandani et al Econometrica 06][Bikhchandani et al. Econometrica 06]

• Consider the case of a single type reporting agent
E i l tl fi th t f th th l– Equivalently, fix the types of the other players

• o(θ) is the allocation chosen when the agent reports θ
• u(θ o) is the agent’s utility for allocation o given true• u(θ, o) is the agent s utility for allocation o given true

type θ
• Rule o(·) is said to be weakly monotone if the u e o() s sa d to be ea y o oto e t e

following condition holds for every θ, θ’:
u(θ, o(θ)) - u(θ, o(θ’)) ≥ u(θ’, o(θ)) - u(θ’, o(θ’))

• In words: if there are no payments, then
– the utility loss from misreporting θ’ when the true type is θ

i t l t t– is at least as great as
– the utility gain from misreporting θ when the true type is θ’

Necessity of weak monotonicity

• Suppose an allocation rule o(·), together with a
payment rule π(·), incentivizes the agent to tell the p y (), g
truth

• Then, for any θ, θ’, the following must hold:
• u(θ, o(θ)) + π(θ) - u(θ, o(θ’)) - π(θ’) ≥ 0
• u(θ’, o(θ’)) + π(θ’) - u(θ’, o(θ)) - π(θ) ≥ 0
• Adding these two together gives
• u(θ, o(θ)) - u(θ, o(θ’)) + u(θ’, o(θ’)) - u(θ’, o(θ)) ≥ 0
• Equivalently
• u(θ, o(θ)) - u(θ, o(θ’)) ≥ u(θ’, o(θ)) - u(θ’, o(θ’))

B t thi i th k t i it diti !• But this is the weak monotonicity condition!

Sufficiency of weak monotonicity
• Suppose the agent has a partial order ≥ over the

allocations
• Here o ≥ o’ indicates that the agent prefers o to o’ for

every type that she may have
E g in o she is allocated a superset of what she is– E.g., in o, she is allocated a superset of what she is
allocated in o’, and free disposal holds

• The set of types is said to be rich if every utility yp y y
function consistent with ≥ corresponds to some type

• Theorem. If preferences are rich, weak monotonicity
i ffi i t f i ti tibilitis sufficient for incentive compatibility
– I.e., for any weakly monotone allocation rule, a payment

function making this rule incentive compatible existsg p
• With more restricted type spaces, weak monotonicity

is not always sufficient

