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Algorithmic mechanism design

Mechanisms should be accompanied by an efficient
algorithm for computing the outcome

May not be easy

— E.g., using the Clarke (VCG) mechanism in combinatorial
auctions requires solving the winner determination problem
optimally

If the mechanism’s outcomes are too hard to

compute, we may need a different mechanism

Algorithmic mechanism design [Nisan & Ronen STOC 99] =
simultaneous design of mechanism and algorithm for
computing its outcomes

— Given a mechanism, is there an efficient algorithm for
computing its outcomes?

— Given an algorithm for choosing outcomes, can we make it
incentive compatible (e.g., using payments)?



Combinatorial auctions: mechanisms that solve

the winner determination problem approximately

* Running Clarke mechanism using approximation
algorithms for WDP is generally not strategy-proof

« Assume bidders are single-minded (only want a single

bundle)

« A greedy strategy-proof mechanism [Lehmann, O’Callaghan,
Shoham JACM 03].
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Clarke-type payments with same approximation
algorithm do not work

v {a}, 11
v {b, c}, 20
XA {a, d}, 18
X Aa, c}, 16
A Ach 7
v {d}, 6
Total value to
bidders other

than the {a}
bidder: 26

V {b, c}, 20
V {a, d}, 18
A{a, c}, 16
A {c}, 7
A {d}, 6

Total value: 38

{a} bidder should
pay 38 - 26 = 12,
more than her
valuation!



A shortest path/combinatorial reverse
auction problem [Nisan & Ronen STOC 99]

Someone wants to buy edges that constitute a path from x to y

Each edge e has a separate owner, and that owner submits
(bids) a cost c,, for it

Goal:

— buy the shortest path (= path with minimum total weight),
— pay every edge according to Clarke mechanism
* Nno incentive to misreport costs
That is, an edge e on the shortest path is paid

(cost of shortest path without e) - (cost of shortest path with e) + ¢

e



Computing Clarke payments

* One strategy:
— Compute shortest path (e.g., using Dijkstra’s algorithm)

— For each edge on the shortest path, remove that edge, solve
the problem again
« O(nm + n? log n) total time

X

* |s there a more efficient algorithm?



Hershberger-Suri [Focs 01] algorithm

« Compute the shortest path trees from x and from y
— using Dijkstra
— gives us the shortest path from any vertex to x and to y

the first (x) tree T U

— Cuts the graph into U and V 5 2 v
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o L]
.........

minimize d(x, u) + c(u, v) + d(v, y)
— Using data structures, can be done for all edges in O(n log n + m)



A make-span/reverse auction problem

[Nisan & Ronen STOC 99]
* There are m jobs that need to be scheduled on (say) 2
machines

 Each machine is owned by a separate agent

* C; Is the time that machine i would take on job |

— also the cost that machine i has for doing j

— private information

* The objective is to minimize the make-span

— = highest total cost for an agent, = completion time of last job

* One possibility: just use Clarke mechanism

— Award job j to the machine that can do it faster (minimize
total work),

— Pay that machine the cost of the other machine for j

« Gives a 2-approximation to the make-span
— Theorem: No deterministic mechanism does better



A bad instance for the Clarke mechanism

 Two jobs
* Machine 1: ¢c41=1,Cc, =1
* Machine 2: ¢c,, = 1+¢€, C,, = 1+€

« Clarke mechanism will give both jobs to 1
 Make-span: 2

* Can get 1+¢ by giving one jOb to each (ignoring mechanism
design considerations)



Weighted Groves mechanisms

* Recall a Groves mechanism
— chooses an allocation o that maximizes the sum of reported
utilities,
— pays agent i: 2, u(6,, 0) + h(B’) for some function h
* A weighted Groves mechanism
— has a weight w, for each agent,
— chooses an allocation o that maximizes 2 w;u,(6., 0),
— pays agent i: (1/w;)2,; w;u;(8;, 0) + h(8) for some function h
« Weighted Groves mechanisms are strategy-proof
[Roberts 1979]



A blased mechanism based on a

weighted Groves mechanism
[Nisan & Ronen STOC 99]

For each job |, bias the mechanism towards accepting
one of the two agents |

— For some b > 1, award job j to i if and only if c; < bc

— If so, i gets payment bc ),

— Otherwise, -i gets payment c;/b

Weighted Groves mechanism, so strategy-proof

A randomized mechanism:

— set b =4/3,

— for each job independently, randomly choose the agent to
which the mechanism is biased

Gives a 7/4 approximation



Characterizing allocation rules that can
be made incentive compatible

 We saw that we may be interested in choosing
allocations that do not maximize social welfare (sum
of utilities)
— Different objectives (e.g., make-span)
— Social welfare maximizing allocation may be

computationally too hard to find

« Some (not all) allocation rules can be made incentive

compatible with the right payment rule

 What are necessary and sufficient conditions on an
allocation rule for this to be possible?



Weak monotonicity
[Bikhchandani et al. Econometrica 06]

Consider the case of a single type reporting agent
— Equivalently, fix the types of the other players

0(0) is the allocation chosen when the agent reports 6

u(B, o) is the agent’s utility for allocation o given true
type O

Rule o(-) is said to be weakly monotone if the
following condition holds for every 0, 6’:

u(®, 0(0)) - u(8, o(6)) 2 u(B’, 0(B)) - u(®’, o(8")
In words: if there are no payments, then

— the utility loss from misreporting 8’ when the true type is 6
— Is at least as great as
— the utility gain from misreporting 6 when the true type is 6’



Necessity of weak monotonicity

Suppose an allocation rule o(-), together with a
payment rule 11(-), incentivizes the agent to tell the
truth

Then, for any 0, €’, the following must hold:

u(o, o(0)) + m(6) - u(d, o(6’)) - m(B’) =0

u(@’, o(0’)) + m(0’) - u(@’, o(B)) - M(B) =0

Adding these two together gives

u(o, o(0)) - u(d, o(6’)) + u(e’, o(0)) - u(d’, 0o(6)) =0
Equivalently

u(d, o(8)) - u(d, o(8’)) = u(d’, o(6)) - u(e’, o(8’))
But this is the weak monotonicity condition!



Sufficiency of weak monotonicity

Suppose the agent has a partial order = over the
allocations

Here o 2 0’ indicates that the agent prefers o to o’ for
every type that she may have

— E.g., in 0, she is allocated a superset of what she is
allocated in o', and free disposal holds

The set of types is said to be rich if every utility

function consistent with = corresponds to some type

Theorem. |[f preferences are rich, weak monotonicity
IS sufficient for incentive compatibility

— |l.e., for any weakly monotone allocation rule, a payment
function making this rule incentive compatible exists

With more restricted type spaces, weak monotonicity
Is not always sufficient



