
CPS 590.4 
Cooperative/coalitionalCooperative/coalitional 

game theory

Vincent Conitzer 
conitzer@cs.duke.edu



Cooperative/coalitional game theory
Th i t f t N• There is a set of agents N

• Each subset (or coalition) S of agents can work 
together in various ways leading to various utilities fortogether in various ways, leading to various utilities for 
the agents

• Cooperative/coalitional game theory studies which p g y
outcome will/should materialize

• Key criteria:
– Stability:  No coalition of agents should want to deviate from 

the solution and go their own way
– Fairness:  Agents should be rewarded for what they a ess ge s s ou d be e a ded o a ey

contribute to the group

• (“Cooperative game theory” is the standard name (distinguishing it from( Cooperative game theory  is the standard name (distinguishing it from 
noncooperative game theory, which is what we have studied so far).  
However this is somewhat of a misnomer because agents still pursue their 
own interests.  Hence some people prefer “coalitional game theory.”)



Example
Th t {1 2 3} t f I di Chi• Three agents {1, 2, 3} can go out for Indian, Chinese, or 
Japanese food

• u1(I) = u2(C) = u3(J) = 4
• u1(C) = u2(J) = u3(I) = 2
• u1(J) = u2(I) = u3(C) = 0

Each agent gets an additional unit of utility for each other agent• Each agent gets an additional unit of utility for each other agent 
that joins her

• Exception: going out alone always gives a total utility of 0
• If all agents go for Indian together, they get utilities (6, 2, 4)
• All going to Chinese gives (4, 6, 2), all going to Japanese gives 

(2 4 6)(2, 4, 6)
• Hence, the utility possibility set for {1, 2, 3} is {(6, 2, 4), (4, 6, 

2), (2, 4, 6)}
F th liti {1 2} th tilit ibilit t i {(5 1) (3 5)• For the coalition {1, 2}, the utility possibility set is {(5, 1), (3, 5), 
(1, 3)} (why?)



Stability & the core
(I) (C) (J) 4• u1(I) = u2(C) = u3(J) = 4

• u1(C) = u2(J) = u3(I) = 2
• u1(J) = u2(I) = u3(C) = 01( ) 2( ) 3( )
• V({1, 2, 3}) = {(6, 2, 4), (4, 6, 2), (2, 4, 6)}
• V({1, 2}) = {(5, 1), (3, 5), (1, 3)}

S h d id ll f J h• Suppose the agents decide to all go for Japanese together, so 
they get (2, 4, 6)

• 1 and 2 would both prefer to break off and get Chinese p g
together for (3, 5) – we say (2, 4, 6) is blocked by {1, 2}
– Blocking only occurs if there is a way of breaking off that would make all

members of the blocking coalition happier
• The core [Gillies 53] is the set of all outcomes (for the grand 

coalition N of all agents) that are blocked by no coalition
• In this example the core is empty (why?)• In this example, the core is empty (why?)
• In a sense, there is no stable outcome



Transferable utility
N th t tilit i t f bl i f• Now suppose that utility is transferable: you can give some of 
your utility to another agent in your coalition (e.g., by making a 
payment)

• Then, all that we need to specify is a value for each coalition, 
which is the maximum total utility for the coalition
– Value function also known as characteristic function

• Any vector of utilities that sums to the value is possible
• Outcome is in the core if and only if: every coalition receives a 

total utility that is at least its valuetotal utility that is at least its value
– For every coalition C, v(C) ≤ Σi in Cu(i)

• In above example, 
– v({1, 2, 3}) = 12, 
– v({1, 2}) = v({1, 3}) = v({2, 3}) = 8,
– v({1}) = v({2}) = v({3}) = 0({ }) ({ }) ({ })

• Now the outcome (4, 4, 4) is possible; it is also in the core 
(why?) and in fact the unique outcome in the core (why?)



Emptiness & multiplicity
• Let us modify the above example so that agents receive no 

utility from being together (except being alone still gives 0)
– v({1, 2, 3}) = 6,v({1, 2, 3})  6, 
– v({1, 2}) = v({1, 3}) = v({2, 3}) = 6,
– v({1}) = v({2}) = v({3}) = 0

• Now the core is empty!• Now the core is empty!
• Conversely, suppose agents receive 2 units of utility for each 

other agent that joins
– v({1, 2, 3}) = 18, 
– v({1, 2}) = v({1, 3}) = v({2, 3}) = 10,
– v({1}) = v({2}) = v({3}) = 0

• Now lots of outcomes are in the core – (6, 6, 6), (5, 5, 8), …
• When is the core guaranteed to be nonempty?
• What about uniqueness?• What about uniqueness?



Superadditivity
• v is superadditive if for all coalitions A, B with A∩B = 

Ø, v(AUB) ≥ v(A) + v(B)
• Informally, the union of two coalitions can always act 

as if they were separate, so should be able to get at 
least what they would get if they were separateleast what they would get if they were separate

• Usually makes sense
• Previous examples were all superadditive• Previous examples were all superadditive
• Given this, always efficient for grand coalition to form



Convexity
A i if f ll liti A B (AUB) (B)• A game is convex if for all coalitions A, B, v(AUB)-v(B) 
≥ v(A)-v(A∩B) (i.e., v is supermodular)

• One interpretation: the marginal contribution of an• One interpretation: the marginal contribution of an 
agent is increasing in the size of the set that it is 
added to

• Previous examples were not convex (why?)
• In convex games, core is always nonempty
• One easy-to-compute solution in the core: agent i 

gets u(i) = v({1, 2, …, i}) - v({1, 2, …, i-1})
– Marginal contribution scheme– Marginal contribution scheme
– Works for any ordering of the agents



The Shapley value [Shapley 1953]

• The marginal contribution scheme is unfair because it depends 
on the ordering of the agents

• One way to make it fair: average over all possible orderings
• Let MC(i, π) be the marginal contribution of i in ordering π
• Then i’s Shapley value is Σ MC(i π)/(n!)• Then i s Shapley value is ΣπMC(i, π)/(n!)
• Always in the core for convex games
• … but not in general, even when core is nonempty, e.g.g p y g

– v({1, 2, 3}) = v({1, 2}) = v({1, 3}) = 1,
– v = 0 everywhere else



Axiomatic characterization 
of the Shapley valueof the Shapley value

• The Shapley value is the unique solution concept that p y q p
satisfies:
– Efficiency:  the total utility is the value of the grand coalition, 
Σ u(i) = v(N)Σi in Nu(i) = v(N)

– Symmetry:  two symmetric players must receive the same 
utility

– Dummy:  if v(SU{i}) = v(S) for all S, then i must get 0
– Additivity:  if we add two games defined by v and w by 

letting (v+w)(S) = v(S) + w(S) then the utility for an agent inletting (v+w)(S)  v(S) + w(S), then the utility for an agent in 
v+w should be the sum of her utilities in v and w

• most controversial axiom



Computing a solution in the core
• Can use linear programming:

– Variables: u(i)
Di t ib ti t i t Σ (i) (N)– Distribution constraint: Σi in Nu(i) = v(N)

– Non-blocking constraints: for every S, Σi in Su(i) ≥ v(S)
• Problem: number of constraints exponential inProblem: number of constraints exponential in 

number of players
• … but if the input explicitly specifies the value of every p p y p y

coalition, polynomial in input size
• … but is this practical?



A concise representation based on 
synergiessynergies [Conitzer & Sandholm AIJ06]

• Assume superadditivityp y
• Say that a coalition S is synergetic if there do not exist 

A, B with A ≠ Ø, B ≠ Ø, A∩B = Ø, AUB = S, v(S) = v(A) 
(B)+ v(B)

• Value of non-synergetic coalitions can be derived 
from values of smaller coalitionsfrom values of smaller coalitions

• So, only specify values for synergetic coalitions in the 
inputput



A useful lemma
• Lemma:  For a given outcome, if there is a blocking 

coalition S (i.e., Σi in Su(i) < v(S)), then there is also a 
ti bl ki litisynergetic blocking coalition

• Proof:
WLOG suppose S is the smallest blocking coalition– WLOG, suppose S is the smallest blocking coalition

– Suppose S is not synergetic
– So, there exist A, B with A ≠ Ø, B ≠ Ø, A∩B = Ø, AUB = S, 

v(S) = v(A) + v(B)
– Σi in Au(i) + Σi in Bu(i) = Σi in Su(i) < v(S) = v(A) + v(B)

Hence either Σ u(i) < v(A) or Σ u(i) < v(B)– Hence either Σi in Au(i) < v(A) or Σi in Bu(i) < v(B)
– I.e., either A or B must be blocking
– Contradiction!



Computing a solution in the core 
under synergy representationunder synergy representation

• Can again use linear programming:
– Variables: u(i)( )
– Distribution constraint: Σi in Nu(i) = v(N)
– Non-blocking constraints: for every synergetic S, Σi in Su(i) ≥ 

v(S)v(S)
• Still requires us to know v(N)
• If we do not know this, computing a solution in the coreIf we do not know this, computing a solution in the core 

is NP-hard
• This is because computing v(N) is NP-hard
• So, the hard part is not the strategic constraints, but 

computing what the grand coalition can do
• If the game is convex then a solution in the core can be• If the game is convex, then a solution in the core can be 

constructed in polynomial time even without knowing 
v(N) 



Other concise representations of 
coalitional gamescoalitional games

• [Deng & Papadimitriou 94]: agents are vertices of a 
graph edges have weights value of coalition =graph, edges have weights, value of coalition  
sum of weights of edges in coalition

• [Conitzer & Sandholm 04]: represent game as sum of p g
smaller games (each of which involves only a few 
agents)

lti l l f th f (1 d• [Ieong & Shoham 05]: multiple rules of the form (1 and 
3 and (not 4) → 7), value of coalition = sum of 
values of rules that apply to itpp y
– E.g., the above rule applies to coalition {1, 2, 3} (so it 

gets 7 from this rule), but not to {1, 3, 4} or {1, 2, 5} (so 
they get nothing from this rule)they get nothing from this rule)

– Generalizes the above two representations (but not 
synergy-based representation)



Nucleolus [Schmeidler 1969]
• Always gives a solution in the core if there exists oneAlways gives a solution in the core if there exists one
• Always uniquely determined
• A coalition’s excess e(S) is v(S) - Σi in Su(i)
• For a given outcome, list all coalitions’ excesses in decreasing 

order
• E.g., considerg ,

– v({1, 2, 3}) = 6, 
– v({1, 2}) = v({1, 3}) = v({2, 3}) = 6,
– v({1}) = v({2}) = v({3}) = 0v({1})  v({2})  v({3})  0

• For outcome (2, 2, 2), the list of excesses is 2, 2, 2, 0, -2, -2, -2 
(coalitions of size 2, 3, 1, respectively)
F t (3 3 0) th li t f i 3 3 0 0 0 3 3• For outcome (3, 3, 0), the list of excesses is 3, 3, 0, 0, 0, -3, -3 
(coalitions {1, 3}, {2, 3}; {1, 2}, {1, 2, 3}, {3}; {1}, {2})

• Nucleolus is the (unique) outcome that lexicographically 
minimizes the list of excesses
– Lexicographic minimization = minimize the first entry first, then (fixing 

the first entry) minimize the second one, etc.



Marriage contract problem 
[Babylonian Talmud 0-500AD][Babylonian Talmud, 0 500AD]

• A man has three wives
• Their marriage contracts specify that they should, respectively, g p y y , p y,

receive 100, 200, and 300 in case of his death
• … but there may not be that much money to go around…
• Talmud recommends:• Talmud recommends:

– If 100 is available, each agent (wife) gets 33 1/3
– If 200 is available, agent 1 gets 50, other two get 75 each

If 300 i il bl t 1 t 50 t 2 t 100 t 3 t 150– If 300 is available, agent 1 gets 50, agent 2 gets 100, agent 3 gets 150
• ?
• Define v(S) = max{0 money available - Σi in N S claim(i)}Define v(S)  max{0, money available Σi in N-S claim(i)}

– Any coalition can walk away and obtain 0
– Any coalition can pay off agents outside the coalition and divide the 

remainderremainder
• Talmud recommends the nucleolus!  [Aumann & Maschler 85]


