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Cooperative/coalitional game theory

* There is a set of agents N

« Each subset (or coalition) S of agents can work
together in various ways, leading to various utilities for
the agents

« Cooperative/coalitional game theory studies which
outcome will/should materialize

» Key criteria:
— Stability: No coalition of agents should want to deviate from
the solution and go their own way

— Fairness: Agents should be rewarded for what they
contribute to the group

(“Cooperative game theory” is the standard name (distinguishing it from
noncooperative game theory, which is what we have studied so far).
However this is somewhat of a misnomer because agents still pursue their
own interests. Hence some people prefer “coalitional game theory.”)



Example

Three agents {1, 2, 3} can go out for Indian, Chinese, or
Japanese food

us(l) =uy(C) = us(J) =4

u,(C) = uy(J) = ug(l) = 2

u,(J) = uy(l) =us(C) =0

Each agent gets an additional unit of utility for each other agent
that joins her

Exception: going out alone always gives a total utility of 0

If all agents go for Indian together, they get utilities (6, 2, 4)

All going to Chinese gives (4, 6, 2), all going to Japanese gives
(2, 4, 6)

Hence, the utility possibility set for {1, 2, 3} is {(6, 2, 4), (4, 6,
2), (2,4,6)}

For the coalition {1, 2}, the utility possibility set is {(5, 1), (3, 5),
(1, 3)} (why?)



Stablility & the core

(1) =uy(C) =us(J) =4

(C) = uyd) = ug(l) = 2

1(J) = uy(l) =us(C) =0

V({1, 2, 3}) ={(6, 2, 4), (4, 6, 2), (2, 4, 6)}
V({1,2}) ={(5, 1), (3, 5), (1, 3)}

Suppose the agents decide to all go for Japanese together, so
they get (2, 4, 6)

1 and 2 would both prefer to break off and get Chinese
together for (3, 5) — we say (2, 4, 6) is blocked by {1, 2}

— Blocking only occurs if there is a way of breaking off that would make all
members of the blocking coalition happier

The core [Gillies 53] is the set of all outcomes (for the grand
coalition N of all agents) that are blocked by no coalition

In this example, the core is empty (why?)
In a sense, there is no stable outcome



Transferable utility

Now suppose that utility is transferable: you can give some of
your utility to another agent in your coalition (e.g., by making a
payment)

Then, all that we need to specify is a value for each coalition,
which is the maximum total utility for the coalition

— Value function also known as characteristic function

Any vector of utilities that sums to the value is possible

Outcome is in the core if and only if: every coalition receives a
total utility that is at least its value

— For every coalition C, v(C) = 2, ,, cu(i)

In above example,

—- v({1, 2, 3}) =12,

- v({1, 2}) =v({1, 3}) = v({2, 3}) = 8,

- v({1}) =v({2}) = v({3}) =0

Now the outcome (4, 4, 4) is possible; it is also in the core
(why?) and in fact the unique outcome in the core (why?)



Emptiness & multiplicity

Let us modify the above example so that agents receive no
utility from being together (except being alone still gives 0)
— v({1, 2, 3}) =6,

- v({1, 2}) =v({1, 3}) = v({2, 3}) = 6,

— v({1}) =v({2}) = v({3}) =0

Now the core is empty!

Conversely, suppose agents receive 2 units of utility for each
other agent that joins

- v({1, 2, 3}) = 18,

- v({1, 2}) = v({1, 3}) = v({2, 3}) = 10,

- v({1}) =v({2}) = v({3}) =0

Now lots of outcomes are in the core — (6, 6, 6), (5, 5, 8), ...
When is the core guaranteed to be nonempty?

What about uniqueness?



Superadditivity

v is superadditive if for all coalitions A, B with ANB =
d, v(AUB) = v(A) + v(B)

Informally, the union of two coalitions can always act
as if they were separate, so should be able to get at
least what they would get if they were separate

Usually makes sense
Previous examples were all superadditive
Given this, always efficient for grand coalition to form



Convexity

A game is convex if for all coalitions A, B, v(AUB)-v(B)
= Vv(A)-v(ANB) (i.e., v is supermodular)

One interpretation: the marginal contribution of an

agent is increasing in the size of the set that it is
added to

Previous examples were not convex (why?)
In convex games, core is always nonempty

One easy-to-compute solution in the core: agent i
gets u(i) =v({1, 2, ..., 1}) -v({1, 2, ..., i-1})

— Marginal contribution scheme
— Works for any ordering of the agents



The Shapley value [Shapley 1953]

The marginal contribution scheme is unfair because it depends
on the ordering of the agents

One way to make it fair. average over all possible orderings
Let MC(i, 11) be the marginal contribution of i in ordering 1T
Then i's Shapley value is 2 _MC(i, 11)/(n!)

Always in the core for convex games

... but not in general, even when core is nonempty, e.g.
- v({1,2,3}) =v({1,2}) = v({1,3}) =1,
— v = 0 everywhere else



Axiomatic characterization
of the Shapley value

* The Shapley value is the unique solution concept that
satisfies:

— Efficiency: the total utility is the value of the grand coalition,
2iinnu(i) = V(N)

— Symmetry: two symmetric players must receive the same
utility

— Dummy: if v(SU{i}) = v(S) for all S, then i must get 0

— Additivity: if we add two games defined by v and w by
letting (v+w)(S) = v(S) + w(S), then the utility for an agent in
v+w should be the sum of her utilities in v and w

* most controversial axiom



Computing a solution in the core

Can use linear programming:

— Variables: u(i)

— Distribution constraint: 2. \u(i) = v(N)

— Non-blocking constraints: for every S, ., su(i) = v(S)
Problem: number of constraints exponential in
number of players
... but if the input explicitly specifies the value of every
coalition, polynomial in input size

... but is this practical?



A concise representation based on
Syn e rg i eS [Conitzer & Sandholm AlJO6]

Assume superadditivity

Say that a coalition S is synergetic if there do not exist
A BwithA#Z3d,B#3J, AB=0,AUB =S, v(S) = v(A)
+ v(B)

Value of non-synergetic coalitions can be derived

from values of smaller coalitions

So, only specify values for synergetic coalitions in the
iInput



A useful lemma

« Lemma: For a given outcome, if there is a blocking
coalition S (i.e., 2., su(i) < v(S)), then there is also a
synergetic blocking coalition

* Proof:

— WLOG, suppose S is the smallest blocking coalition

— Suppose S is not synergetic

— So, there exist A, BwithA#Z9, B# 3, ANB=d, AUB =S,
v(S) = v(A) + v(B)

— 2iinal(i) + 25, gU(I) = 2, sU(i) < V(S) = Vv(A) + v(B)

— Hence either 2, Au(i) < v(A) or 2, gu(i) < v(B)

— |l.e., either A or B must be blocking

— Contradiction!



Computing a solution in the core
under synergy representation

Can again use linear programming:

— Variables: u(i)

— Distribution constraint: 2, \u(i) = v(N)

— Non-blocking constraints: for every synergetic S, Z;;, su(i) 2
v(S)

Still requires us to know v(N)

If we do not know this, computing a solution in the core
IS NP-hard

This is because computing v(N) is NP-hard

S0, the hard part is not the strategic constraints, but
computing what the grand coalition can do

If the game is convex, then a solution in the core can be
constructed in polynomial time even without knowing
V(N)



Other concise representations of
coalitional games

- [Deng & Papadimitriou 94]: agents are vertices of a
graph, edges have weights, value of coalition =
sum of weights of edges in coalition

« [Conitzer & Sandholm 04]. represent game as sum of
smaller games (each of which involves only a few
agents)

- [leong & Shoham 05]: multiple rules of the form (1 and
3 and (not 4) — 7), value of coalition = sum of
values of rules that apply to it

— E.g., the above rule applies to coalition {1, 2, 3} (so it
gets 7 from this rule), but not to {1, 3, 4} or {1, 2, 5} (so
they get nothing from this rule)

— Generalizes the above two representations (but not
synergy-based representation)



Nucleolus [Schmeidler 1969]

Always gives a solution in the core if there exists one

Always uniquely determined

A coalition’s excess e(S) is v(S) - Z;;, su(i)

For a given outcome, list all coalitions’ excesses in decreasing
order

E.g., consider

- v({1, 2, 3}) =6,

- v({1, 2}) =v({1, 3}) = v({2, 3}) = 6,

- v({1}) = v({2}) = v({3}) = 0

For outcome (2, 2, 2), the list of excesses is 2, 2, 2,0, -2, -2, -2
(coalitions of size 2, 3, 1, respectively)

For outcome (3, 3, 0), the list of excesses is 3, 3,0, 0, 0, -3, -3
(coalitions {1, 3}, {2, 3}; {1, 2}, {1, 2, 3}, {3}; {1}, {2})

Nucleolus is the (unique) outcome that lexicographically
minimizes the list of excesses

— Lexicographic minimization = minimize the first entry first, then (fixing
the first entry) minimize the second one, etc.



Marriage contract problem
[Babylonian Talmud, 0-500AD]

A man has three wives

Their marriage contracts specify that they should, respectively,
receive 100, 200, and 300 in case of his death

... but there may not be that much money to go around...

Talmud recommends:

— If 100 is available, each agent (wife) gets 33 1/3

— If 200 is available, agent 1 gets 50, other two get 75 each

— If 300 is available, agent 1 gets 50, agent 2 gets 100, agent 3 gets 150
?

Define v(S) = max{0, money available - 2., \.g claim(i)}
— Any coalition can walk away and obtain O

— Any coalition can pay off agents outside the coalition and divide the
remainder

Talmud recommends the nucleolus! [Aumann & Maschler 85]



