CPS 590.4
Learning in games

Vincent Conitzer
conitzer@cs.duke.edu



“2/3 of the average” game

* Everyone writes down a number between 0 and 100
* Person closest to 2/3 of the average wins

 Example:
— A says 50
— B says 10
— C says 90
— Average(50, 10, 90) = 50
— 2/3 of average = 33.33
— Ais closest (|50-33.33| = 16.67), so A wins



“2/3 of the average” game revisited
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Learning In (normal-form) games

Approach we have taken so far when playing a game: just
compute an optimal/equilibrium strategy

Another approach: learn how to play a game by
— playing it many times, and
— updating your strategy based on experience
Why?
— Some of the game’s utilities (especially the other players’) may be
unknown to you
— The other players may not be playing an equilibrium strategy
— Computing an optimal strategy can be hard
— Learning is what humans typically do

Learning strategies ~ strategies for the repeated game
Does learning converge to equilibrium?



Iterated best response

In the first round, play something arbitrary

In each following round, play a best response against
what the other players played in the previous round

If all players play this, it can converge (i.e., we reach
an equilibrium) or cycle
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rock-paper-scissors

Alternating best response: players alternatingly
change strategies: one player best-responds each
odd round, the other best-responds each even round



Can still fail to converge...

Fictitious play [Brown 1951]

In the first round, play something arbitrary

In each following round, play a best response against
the empirical distribution of the other players’ play
— l.e., as if other player randomly selects from his past actions

Again, if this converges, we have a Nash equilibrium
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Does the empirical distribution
of play converge to equilibrium?

« ... for iterated best response?
o ... for fictitious play?
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Fictitious play Is guaranteed to
converge in...

» Two-player zero-sum games [Robinson
1951]

* Generic 2x2 games [Miyasawa 1961]

 Games solvable by iterated strict dominance
[Nachbar 1990]

* Weighted potential games [Monderer &
Shapley 19906]

* Not in general [Shapley 1964]

« But, fictitious play always converges to the set of 72-
approximate equilibria [Conitzer 2009; more detailed analysis by
Goldberg, Savani, Sgrensen, Ventre 2011]



Shapley’s game on which fictitious
play does not converge
« starting with (U, M):




Regret

For each player i, action a, and time t, define the regret ri(a, t) as
(Z1<r<tqUi(@;, ay) - U@y, a4yp))/(t-1)
An algorithm has zero regret if for each a,, the regret for a,

becomes nonpositive as t goes to infinity (almost surely) against any
opponents

Regret matching [Hart & Mas-Colell 00]: at time t, play an action that
has positive regret r;(a;, t) with probability proportional to ri(a, t)

— If none of the actions have positive regret, play uniformly at random
Regret matching has zero regret

If all players use regret matching, then play converges to the set
of weak correlated equilibria

— Weak correlated equilibrium: playing according to joint distribution is
at least as good as any strategy that does not depend on the signal

Variants of this converge to the set of correlated equilibria

Smooth fictitious play [Fudenberg & Levine 95] also gives no regret

— Instead of just best-responding to history, assign some small value
to having a more “mixed” distribution



Targeted learning

Assume that there is a limited set of possible opponents
Try to do well against these

Example: is there a learning algorithm that

— learns to best-respond against any stationary opponent (one that
always plays the same mixed strategy), and

— converges to a Nash equilibrium (in actual strategies, not historical

distribution) when playing against a copy of itself (so-called self-play)?
[Bowling and Veloso AlJ02]: yes, if it is a 2-player 2x2 game and
mixed strategies are observable

[Conitzer and Sandholm MLO06]: yes (without those assumptions)

— AWESOME algorithm (Adapt When Everybody is Stationary, Otherwise
Move to Equilibrium): (very) rough sketch:

not all players appear to be
playing equilibrium

play according to best-respond to
equilibrium strategy not all players appear to recent history

be playing stationary
k strategies J




“Teaching”

Suppose you are playing against a player that uses
one of these strategies

— Fictitious play, anything with no regret, AWESOME, ...

Also suppose you are very patient, i.e., you only care
about what happens in the long run

How will you (the row player) play in the following

repeated games?

— Hint: the other player will eventually best-respond to
whatever you do

4,4 | 3,5 1,0 | 3,1
5,3 0,0 2, 1 4,0

Note relationship to optimal strategies to commit to

There is some work on learning strategies that are in
equilibrium with each other [Brafman & Tennenholtz AlJ04]




Evolutionary game theory

Given: a symmetric game

dove hawk
dove 1’ 1 O’ 2 Nash equilibria: (d, h),
nawk[ 2 () A -1 (h, d), ((:5, 5), (5, 5))

A large population of players plays this game, players are
randomly matched to play with each other

Each player plays a pure strategy

— Fraction of players playing strategy s = p,

— p is vector of all fractions p, (the state)

Utility for playing s is u(s, p) = Z,pgu(s, s’)

Players reproduce at a rate that is proportional to their utility,

their offspring play the same strategy
— Replicator dynamic

dp(t)/dt = ps(t)(u(s, p(t)) - Zgpsu(s’, p(t)))
What are the steady states of this?



Stability

dove hawk

dove 1, 1 O, ?
nawk| 2 () 1, -1

A steady state is stable if slightly perturbing the state
will not cause us to move far away from the state

E.g. everyone playing dove is not stable, because if a
few hawks are added their percentage will grow

What about the mixed steady state?

Proposition: every stable steady state is a Nash
equilibrium of the symmetric game

Slightly stronger criterion: a state is asymptotically
stable if it is stable, and after slightly perturbing this
state, we will (in the limit) return to this state




Evolutionarily stable strategies

Now suppose players play mixed strategies

A (single) mixed strategy o is evolutionarily stable if
the following is true:
— Suppose all players play o

— Then, whenever a very small number of invaders enters
that play a different strategy o’,

— the players playing o must get strictly higher utility than
those playing o’ (i.e., 0 must be able to repel invaders)

o will be evolutionarily stable if and only if for all o

— u(o, o) > u(o’, o), or:

— u(o, o) =u(o’, o) and u(o, ¢’) > u(o’, 0’)

Proposition: every evolutionarily stable strategy is

asymptotically stable under the replicator dynamic



