

CPS 590.4

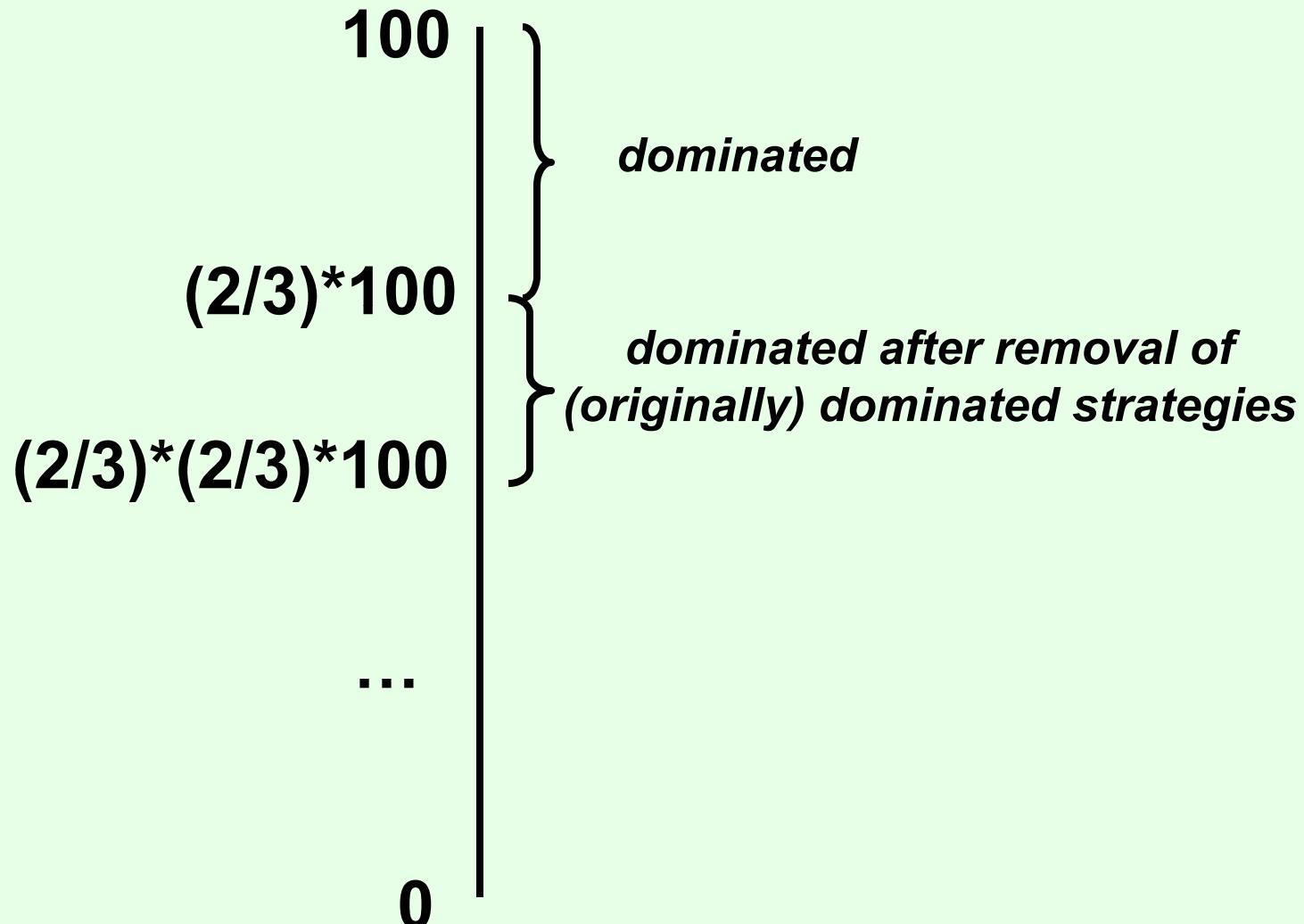
Learning in games

Vincent Conitzer
conitzer@cs.duke.edu

“2/3 of the average” game

- Everyone writes down a number between 0 and 100
- Person closest to 2/3 of the average wins
- Example:
 - A says 50
 - B says 10
 - C says 90
 - Average(50, 10, 90) = 50
 - 2/3 of average = 33.33
 - A is closest ($|50-33.33| = 16.67$), so A wins

“2/3 of the average” game revisited



Learning in (normal-form) games

- Approach we have taken so far when playing a game: just compute an optimal/equilibrium strategy
- Another approach: **learn** how to play a game by
 - playing it many times, and
 - updating your strategy based on experience
- Why?
 - Some of the game's utilities (especially the other players') may be **unknown** to you
 - The other players may **not be** playing an equilibrium strategy
 - Computing an optimal strategy can be **hard**
 - Learning is what **humans** typically do
 - ...
- Learning strategies ~ strategies for the repeated game
- Does learning converge to equilibrium?

Iterated best response

- In the first round, play something arbitrary
- In each following round, play a best response against what the other players played in the **previous** round
- If all players play this, it can converge (i.e., we reach an equilibrium) or cycle

0, 0	-1, 1	1, -1
1, -1	0, 0	-1, 1
-1, 1	1, -1	0, 0

rock-paper-scissors

-1, -1	0, 0
0, 0	-1, -1

a simple congestion game

- **Alternating best response**: players alternatingly change strategies: one player best-responds each odd round, the other best-responds each even round

Fictitious play [Brown 1951]

- In the first round, play something arbitrary
- In each following round, play a best response against the **empirical distribution** of the other players' play
 - i.e., as if other player randomly selects from his past actions
- Again, if this converges, we have a Nash equilibrium
- Can still fail to converge...

0, 0	-1, 1	1, -1
1, -1	0, 0	-1, 1
-1, 1	1, -1	0, 0

rock-paper-scissors

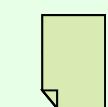
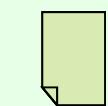
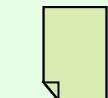
-1, -1	0, 0
0, 0	-1, -1

a simple congestion game

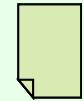
Fictitious play on rock-paper-scissors

	0, 0	-1, 1	1, -1
	1, -1	0, 0	-1, 1
	-1, 1	1, -1	0, 0

Row



Column



30% R, 50% P, 20% S

30% R, 20% P, 50% S

Does the empirical distribution of play converge to equilibrium?

- ... for iterated best response?
- ... for fictitious play?

3, 0	1, 2
1, 2	2, 1

Fictitious play is guaranteed to converge in...

- Two-player zero-sum games [Robinson 1951]
- Generic 2x2 games [Miyasawa 1961]
- Games solvable by iterated strict dominance [Nachbar 1990]
- Weighted potential games [Monderer & Shapley 1996]
- **Not** in general [Shapley 1964]
- But, fictitious play always converges to the set of $\frac{1}{2}$ -approximate equilibria [Conitzer 2009; more detailed analysis by Goldberg, Savani, Sørensen, Ventre 2011]

Shapley's game on which fictitious play does not converge

- starting with (U, M) :

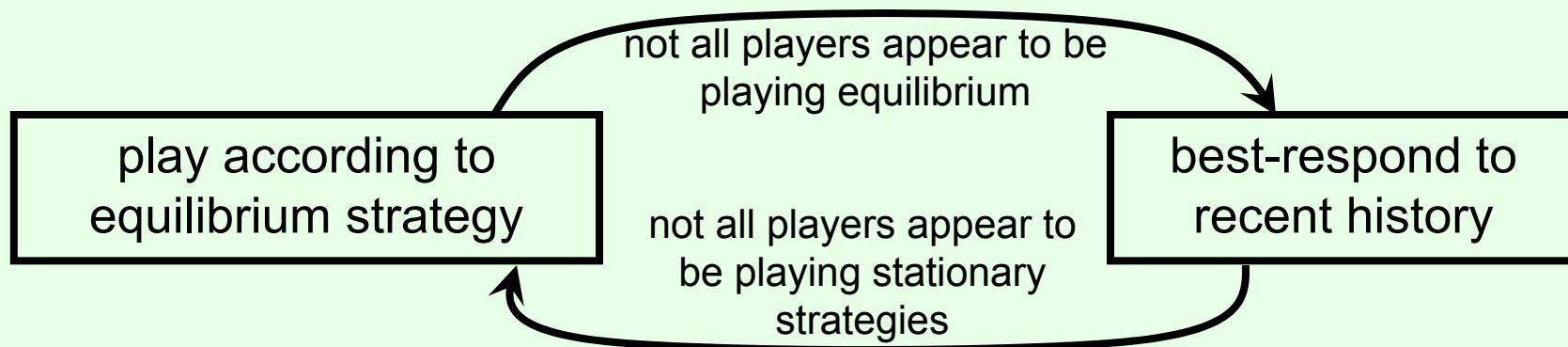
0, 0	0, 1	1, 0
1, 0	0, 0	0, 1
0, 1	1, 0	0, 0

Regret

- For each player i , action a_i and time t , define the **regret** $r_i(a_i, t)$ as $(\sum_{1 \leq t' \leq t-1} u_i(a_i, a_{-i, t'}) - u_i(a_{i, t'}, a_{-i, t'})) / (t-1)$
- An algorithm has **zero regret** if for each a_i , the regret for a_i becomes nonpositive as t goes to infinity (almost surely) against **any** opponents
- **Regret matching** [Hart & Mas-Colell 00]: at time t , play an action that has positive regret $r_i(a_i, t)$ with probability proportional to $r_i(a_i, t)$
 - If none of the actions have positive regret, play uniformly at random
- Regret matching has zero regret
- If all players use regret matching, then play converges to the set of **weak correlated equilibria**
 - Weak correlated equilibrium: playing according to joint distribution is at least as good as any strategy that does not depend on the signal
- Variants of this converge to the set of correlated equilibria
- **Smooth fictitious play** [Fudenberg & Levine 95] also gives no regret
 - Instead of just best-responding to history, assign some small value to having a more “mixed” distribution

Targeted learning

- Assume that there is a **limited** set of possible opponents
- Try to do well against these
- Example: is there a learning algorithm that
 - learns to best-respond against any stationary opponent (one that always plays the same mixed strategy), and
 - converges to a Nash equilibrium (in actual strategies, not historical distribution) when playing against a copy of itself (so-called **self-play**)?
- [Bowling and Veloso AIJ02]: yes, if it is a 2-player 2x2 game and mixed strategies are observable
- [Conitzer and Sandholm ML06]: yes (without those assumptions)
 - AWESOME algorithm (Adapt When Everybody is Stationary, Otherwise Move to Equilibrium): (very) rough sketch:



“Teaching”

- Suppose you are playing against a player that uses one of these strategies
 - Fictitious play, anything with no regret, AWESOME, ...
- Also suppose you are very patient, i.e., you only care about what happens in the long run
- How will you (the row player) play in the following repeated games?
 - Hint: the other player will eventually best-respond to whatever you do

4, 4	3, 5
5, 3	0, 0

1, 0	3, 1
2, 1	4, 0

- Note relationship to optimal strategies to commit to
- There is some work on learning strategies that are in **equilibrium** with each other [Brafman & Tennenholz AIJ04]

Evolutionary game theory

- Given: a symmetric game

	dove	hawk
dove	1, 1	0, 2
hawk	2, 0	-1, -1

Nash equilibria: (d, h), (h, d), ((.5, .5), (.5, .5))

- A large population of players plays this game, players are randomly matched to play with each other
- Each player plays a pure strategy
 - Fraction of players playing strategy $s = p_s$
 - p is vector of all fractions p_s (the **state**)
- Utility for playing s is $u(s, p) = \sum_{s'} p_{s'} u(s, s')$
- Players **reproduce** at a rate that is proportional to their utility, their offspring play the same strategy
 - Replicator dynamic**
- $dp_s(t)/dt = p_s(t)(u(s, p(t)) - \sum_{s'} p_{s'} u(s', p(t)))$
- What are the **steady states** of this?

Stability

	dove	hawk
dove	1, 1	0, 2
hawk	2, 0	-1, -1

- A steady state is **stable** if slightly perturbing the state will not cause us to move far away from the state
- E.g. everyone playing dove is not stable, because if a few hawks are added their percentage will grow
- What about the mixed steady state?
- Proposition: every stable steady state is a Nash equilibrium of the symmetric game
- Slightly stronger criterion: a state is **asymptotically stable** if it is stable, and after slightly perturbing this state, we will (in the limit) return to this state

Evolutionarily stable strategies

- Now suppose players play **mixed** strategies
- A (single) mixed strategy σ is **evolutionarily stable** if the following is true:
 - Suppose all players play σ
 - Then, whenever a very small number of **invaders** enters that play a different strategy σ' ,
 - the players playing σ must get strictly **higher** utility than those playing σ' (i.e., σ must be able to **repel invaders**)
- σ will be evolutionarily stable if and only if for all σ'
 - $u(\sigma, \sigma) > u(\sigma', \sigma)$, or:
 - $u(\sigma, \sigma) = u(\sigma', \sigma)$ and $u(\sigma, \sigma') > u(\sigma', \sigma')$
- Proposition: every evolutionarily stable strategy is asymptotically stable under the replicator dynamic