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“2/3 of the average” game
• Everyone writes down a number between 0 and 100
• Person closest to 2/3 of the average wins
• Example:

– A says 50
– B says 10
– C says 90
– Average(50, 10, 90) = 50
– 2/3 of average = 33.33

A i l (|50 33 33| 16 67) A i– A is closest (|50-33.33| = 16.67), so A wins



“2/3 of the average” game revisited

100

(2/3)*100

dominated

(2/3) 100

(2/3)*(2/3)*100

dominated after removal of 
(originally) dominated strategies

( ) ( )

…

0



Learning in (normal-form) games
• Approach we have taken so far when playing a game: just 

compute an optimal/equilibrium strategy
Another approach: learn how to play a game by• Another approach: learn how to play a game by
– playing it many times, and 
– updating your strategy based on experience

• Why?
– Some of the game’s utilities (especially the other players’) may be 

unknown to you
– The other players may not be playing an equilibrium strategy
– Computing an optimal strategy can be hard
– Learning is what humans typically do
– …

• Learning strategies ~ strategies for the repeated game
• Does learning converge to equilibrium?Does learning converge to equilibrium?



Iterated best response
• In the first round play something arbitrary• In the first round, play something arbitrary
• In each following round, play a best response against 

what the other players played in the previous roundwhat the other players played in the previous round
• If all players play this, it can converge (i.e., we reach 

an equilibrium) or cycle

0, 0 -1, 1 1, -1
1 1 0 0 1 1

-1, -1 0, 0
1, -1 0, 0 -1, 1
-1, 1 1, -1 0, 0

, ,
0, 0 -1, -1

a simple congestion game

• Alternating best response: players alternatingly 
h t t i l b t d h

rock-paper-scissors

change strategies: one player best-responds each 
odd round, the other best-responds each even round



Fictitious play [Brown 1951]
• In the first round play something arbitrary• In the first round, play something arbitrary
• In each following round, play a best response against 

the empirical distribution of the other players’ playthe empirical distribution of the other players  play
– I.e., as if other player randomly selects from his past actions

• Again, if this converges, we have a Nash equilibrium
• Can still fail to converge…

0, 0 -1, 1 1, -1
1 1 0 0 1 1

-1, -1 0, 0
1, -1 0, 0 -1, 1
-1, 1 1, -1 0, 0

1, 1 0, 0
0, 0 -1, -1

i l i
, , ,

rock-paper-scissors
a simple congestion game



Fictitious 
l

Row Column

play on 
rock-paper-p p

scissors

0, 0 -1, 1 1, -1
1 -1 0 0 -1 11, -1 0, 0 -1, 1
-1, 1 1, -1 0, 0

30% R, 50% P, 20% S 30% R, 20% P, 50% S



Does the empirical distribution 
of play converge to equilibrium?

f it t d b t ?• … for iterated best response?
• … for fictitious play?

3, 0 1, 23, 0 1, 2
1, 2 2, 1



Fictitious play is guaranteed to 
converge inconverge in…

• Two-player zero-sum games [Robinson p y g [
1951]

• Generic 2x2 games [Miyasawa 1961]g [ y ]
• Games solvable by iterated strict dominance 

[Nachbar 1990][ ]
• Weighted potential games [Monderer & 

Shapley 1996]p y ]
• Not in general [Shapley 1964]
• But, fictitious play always converges to the set of ½-

approximate equilibria [Conitzer 2009; more detailed analysis by 
Goldberg, Savani, Sørensen, Ventre 2011]



Shapley’s game on which fictitious 
play does not convergeplay does not converge

• starting with (U, M):g ( , )

0 0 0 1 1 00, 0 0, 1 1, 0
1, 0 0, 0 0, 1
0, 1 1, 0 0, 0



Regret
• For each player i action a and time t define the regret r (a t) as• For each player i, action ai and time t, define the regret ri(ai, t) as 

(Σ1≤t’≤t-1ui(ai, a-i,t’) - ui(ai,t’, a-i,t’))/(t-1)
• An algorithm has zero regret if for each ai, the regret for ai 

becomes nonpositive as t goes to infinity (almost surely) against anybecomes nonpositive as t goes to infinity (almost surely) against any
opponents 

• Regret matching [Hart & Mas-Colell 00]: at time t, play an action that 
has positi e regret r (a t) ith probabilit proportional to r (a t)has positive regret ri(ai, t) with probability proportional to ri(ai, t) 
– If none of the actions have positive regret, play uniformly at random

• Regret matching has zero regret
• If all players use regret matching, then play converges to the set 

of weak correlated equilibria
– Weak correlated equilibrium: playing according to joint distribution is q p y g g j

at least as good as any strategy that does not depend on the signal
• Variants of this converge to the set of correlated equilibria
• Smooth fictitious play [Fudenberg & Levine 95] also gives no regretSmooth fictitious play [Fudenberg & Levine 95] also gives no regret

– Instead of just best-responding to history, assign some small value 
to having a more “mixed” distribution



Targeted learning
• Assume that there is a limited set of possible opponents
• Try to do well against these
• Example: is there a learning algorithm that

– learns to best-respond against any stationary opponent (one thatlearns to best respond against any stationary opponent (one that 
always plays the same mixed strategy), and

– converges to a Nash equilibrium (in actual strategies, not historical 
distribution) when playing against a copy of itself (so-called self-play)?

• [Bowling and Veloso AIJ02]: yes, if it is a 2-player 2x2 game and 
mixed strategies are observable

• [Conitzer and Sandholm ML06]: yes (without those assumptions)• [Conitzer and Sandholm ML06]: yes (without those assumptions)
– AWESOME algorithm (Adapt When Everybody is Stationary, Otherwise 

Move to Equilibrium): (very) rough sketch:

play according to best-respond to 

not all players appear to be 
playing equilibrium

p y g
equilibrium strategy

p
recent historynot all players appear to 

be playing stationary 
strategies



“Teaching”
• Suppose you are playing against a player that uses pp y p y g g p y

one of these strategies
– Fictitious play, anything with no regret, AWESOME, …

• Also suppose you are very patient, i.e., you only care 
about what happens in the long run

• How will you (the row player) play in the following• How will you (the row player) play in the following 
repeated games?
– Hint: the other player will eventually best-respond to 

4, 4 3, 5

p y y p
whatever you do

1, 0 3, 1
5, 3 0, 0 2, 1 4, 0

• Note relationship to optimal strategies to commit to• Note relationship to optimal strategies to commit to
• There is some work on learning strategies that are in 

equilibrium with each other [Brafman & Tennenholtz AIJ04]



Evolutionary game theory
Gi t i• Given: a symmetric game

1, 1 0, 2
dove

dove

hawk

Nash equilibria: (d h)1, 1 0, 2
2, 0 -1, -1hawk

• A large population of players plays this game players are

Nash equilibria: (d, h), 
(h, d), ((.5, .5), (.5, .5))

• A large population of players plays this game, players are 
randomly matched to play with each other

• Each player plays a pure strategy
– Fraction of players playing strategy s = ps
– p is vector of all fractions ps (the state)

• Utility for playing s is u(s, p) = Σs’ps’u(s, s’)y p y g ( , p) s ps ( , )
• Players reproduce at a rate that is proportional to their utility, 

their offspring play the same strategy
– Replicator dynamicReplicator dynamic

• dps(t)/dt = ps(t)(u(s, p(t)) - Σs’ps’u(s’, p(t)))
• What are the steady states of this?



Stability
d h k

1, 1 0, 2
2 0 1 1

dove

dove

hawk

h k

• A steady state is stable if slightly perturbing the state 

2, 0 -1, -1hawk

y g y g
will not cause us to move far away from the state

• E.g. everyone playing dove is not stable, because if a 
few hawks are added their percentage will growfew hawks are added their percentage will grow

• What about the mixed steady state?
• Proposition: every stable steady state is a Nash• Proposition: every stable steady state is a Nash 

equilibrium of the symmetric game
• Slightly stronger criterion: a state is asymptoticallySlightly stronger criterion: a state is asymptotically 

stable if it is stable, and after slightly perturbing this 
state, we will (in the limit) return to this state



Evolutionarily stable strategies
N l l i d t t i• Now suppose players play mixed strategies

• A (single) mixed strategy σ is evolutionarily stable if 
the following is true:the following is true:
– Suppose all players play σ
– Then, whenever a very small number of invaders enters 

that play a different strategy σ’,
– the players playing σ must get strictly higher utility than 

those playing σ’ (i.e., σ must be able to repel invaders)those playing σ  (i.e., σ must be able to repel invaders)
• σ will be evolutionarily stable if and only if for all σ’

– u(σ, σ) > u(σ’, σ), or:
– u(σ, σ) = u(σ’, σ) and u(σ, σ’) > u(σ’, σ’)

• Proposition: every evolutionarily stable strategy is 
asymptotically stable under the replicator dynamicasymptotically stable under the replicator dynamic


